

# Technical Appendix: Knowledge, Attitudes and Perceptions of Management Strategies and Regulations of the Gray's Reef National Marine Sanctuary by Users and Non-users of the Sanctuary: Version 2 

U.S. Department of Commerce

National Oceanic and Atmospheric Administration National Ocean Service


Office of Ocean and Coastal Resource Management Office of National Marine Sanctuaries

## About the Marine Sanctuaries Conservation Series

The Office of National Marine Sanctuaries, part of the National Oceanic and Atmospheric Administration, serves as the trustee for a system of 14 marine protected areas encompassing more than 170,000 square miles of ocean and Great Lakes waters. The 13 national marine sanctuaries and one marine national monument within the National Marine Sanctuary System represent areas of America's ocean and Great Lakes environment that are of special national significance. Within their waters, giant bumpback whales breed and calve their young, coral colonies flourish, and shipwrecks tell stories of our maritime history. Habitats include beautiful coral reefs, lush kelp forests, whale migrations corridors, spectacular deep-sea canyons, and underwater archaeological sites. These special places also provide homes to thousands of unique or endangered species and are important to America's cultural beritage. Sites range in size from one square mile to almost 140,000 square miles and serve as natural classrooms, cherished recreational spots, and are home to valuable commercial industries.

Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored management plan. Conservation, education, research, monitoring and enforcement programs vary accordingly. The integration of these programs is fundamental to marine protected area management. The Marine Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication and discussion of the complex issues currently facing the sanctuary system. Topics of published reports vary substantially and may include descriptions of educational programs, discussions on resource management issues, and results of scientific research and monitoring projects. The series facilitates integration of natural sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs of $N O A$ A's resource protection mandate.

# Technical Appendix: Knowledge, Attitudes and Perceptions of Management Strategies and Regulations of the Gray's Reef National Marine Sanctuary by Users and Non-users of the Sanctuary: Version 2 

Vernon R. Leeworthy ${ }^{1}$

1. NOAA, National Ocean Service, Office of National Marine Sanctuaries
U.S. Department of Commerce Rebecca Blank, Acting Secretary

National Oceanic and Atmospheric Administration Kathryn Sullivan, Ph.D.
Acting Under Secretary of Commerce for Oceans and Atmosphere
National Ocean Service
Holly Bamford, Ph.D., Assistant Administrator

Silver Spring, Maryland
March 2013

Office of National Marine Sanctuaries Daniel J. Basta, Director

## DISCLAIMER

Report content does not necessarily reflect the views and policies of the Office of National Marine Sanctuaries or the National Oceanic and Atmospheric Administration, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

## REPORT AVAILABILITY

Electronic copies of this report may be downloaded from the Office of National Marine Sanctuaries web site at www.sanctuaries.nos.noaa.gov. Hard copies may be available from the following address:

National Oceanic and Atmospheric Administration<br>Office of National Marine Sanctuaries<br>SSMC4, N/NMS1<br>1305 East-West Highway<br>Silver Spring, MD 20910

## COVER

Diver, Atlantic spadefish and "live bottom" at Gray’s Reef. Photo by Greg McFall.

## SUGGESTED CITATION

Leeworthy, V.R. 2013. Technical Appendix: Knowledge, Attitudes and Perceptions of Management Strategies and Regulations of the Gray’s Reef National Marine Sanctuaries by Users and Non-users of the Sanctuary: Version 2. Marine Sanctuaries Conservation Series ONMS-13-03. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD. 98 pp .

## CONTACT

Dr. Vernon R. (Bob) Leeworthy
Chief Economist
Office of National Marine Sanctuaries
1305 East West Highway, SSMC4, $11^{\text {th }}$ floor
Silver Spring, MD 20910
Telephone: (301) 713-7261
Fax: (301) 713-0404
E-mail: Bob.Leeworthy@noaa.gov


#### Abstract

This research is part of the Socioeconomic Research \& Monitoring Program for the NOAA Office of National Marine Sanctuaries. In 2010, a baseline study of users and non-users of Gray’s Reef National Marine Sanctuary (GRNMS) was initiated. Mail surveys were designed in 2010 and implemented in 2011 and 2012.


The study provides baseline data on the knowledge, attitudes and perceptions of users and non-users of GRNMS in regard to management strategies and regulations. It also provides information on socioeconomic/demographic profiles, activity participation and use of coastal and ocean waters off the Georgia coast both inside and outside GRNMS. The surveys collected data on sources of public information on GRNMS used and the trust of sources used, familiarity with GRNMS rules and regulations, and attitudes about selected management strategies for coastal and ocean resources both inside and outside GRNMS. For users of GRNMS, perceptions of resource conditions were also addressed.

For users and non-users, two versions of the surveys were designed to address all the issues above. Both versions of the survey were implemented for separate samples of nonusers of GRNMS in 2011. For users, Version 1 of the survey was implemented in 2011 and Version 2, which obtains information about attitudes on selected management strategies for coastal and ocean resources both inside and outside GRNMS was implemented in 2012.

The technical appendix for users version 1 and non-users versions 1 and 2 are reported in Leeworthy (2012b), while this report is the "Technical Appendix" for users version 2 as found in Leeworthy (2013) and documents the statistical tests that were done for comparing users version 1 and 2 surveys and the statistical tests for differences between the responses by users and non-users to version 2 survey questions on various policy/management strategies included in version 2 surveys.

## Key Findings:

- Results of the surveys of users were not sensitive to response rates as version 1 had a $50 \%$ response rate, while version 2 had a $25 \%$ response rate and there were very few statistically significant differences in responses, except for sources of information used and trust of the information sources used.
- Sources of Information Used: There were only two significant differences between respondents of versions 1 and 2 of the surveys. Version 2 respondents used Georgia Sea Grant and IGFA more than version 1 respondents.
- Trust of Sources of Information: There were only two significant differences between respondents of version 1 and 2 of the surveys. Version 2 respondents had less trust for information from GRNMS staff and from the GRNMS Web site.


## KEY WORDS

[^0]
## Table of Contents

Introduction ..... 1
Chapter 1: Surveys of Users and Non-users of GRNMS ..... 1
Sampling Frames ..... 1
Response Rates ..... 3
Non-response Bias/Sample Weighting ..... 4
Statistical Tests ..... 4
Chapter 2: Users Version 1 Compared to Users Version 2
Socioeconomic/Demographic Profiles ..... 5
Comparisons of All respondents to each Survey Version ..... 5
Comparisons of Respondents to both Survey Versions ..... 5
Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 10
Comparisons of All respondents to each Survey Version ..... 10
Comparisons of Respondents to both Survey Versions... ..... 10
Activity Participation in Coastal and Ocean Areas in GRNMS ..... 10
Comparisons of All respondents to each Survey Version ..... 10
Comparisons of Respondents to both Survey Versions ..... 10
Average or Mean Person-days by Activity in the Coastal \& Ocean Areas in and around Georgia Outside GRNMS ..... 12
Comparisons of All Respondents to each Survey Version ..... 12
Comparisons of Respondents to both Survey Versions ..... 13
Average or Mean Person-days by Activity in the Coastal \& Ocean Areas in GRNMS ..... 15
Comparisons of All Respondents to each Survey Version. ..... 15
Comparisons of Respondents to both Survey Versions. ..... 15
Sources of Information Used ..... 17
Comparisons of All Respondents to each Survey Version ..... 17
Comparisons of Respondents to both Survey Versions ..... 17
Level of Trust of Information Sources Used ..... 20
Comparisons of All Respondents to each Survey Version. ..... 21
Comparisons of Respondents to both Survey Versions ..... 21
How Users prefer to receive information ..... 23
Comparisons of All Respondents to each Survey Version. ..... 23
Comparisons of Respondents to both Survey Versions ..... 23
Familiarity with GRNMS Regulations. ..... 24
Comparisons of All Respondents to each Survey Version ..... 24
Comparisons of Respondents to both Survey Versions ..... 24
Perceptions of the Conditions of Resources in GRNMS ..... 25
Comparisons of All Respondents to each Survey Version. ..... 25
Comparisons of Respondents to both Survey Versions ..... 25
Page
Number
Factors that influenced the Choice of Going to GRNMS to do Activities ..... 28
Comparisons of All Respondents to each Survey Version. ..... 28
Comparisons of Respondents to both Survey Versions ..... 28
Chapter 3: Users Version 1 compared to Pooled Version 1 \& 2 Samples. ..... 31
Socioeconomic/Demographic Profiles.... ..... 31
Activity Participation in Coastal \& Ocean Areas in and around Georgia Outside GRNMS ..... 34
Activity Participation in coastal \& Ocean Areas in GRNMS. ..... 35
Average of Mean Person-days by Activity in the Coastal \& Ocean Areas in and around Georgia Outside GRNMS ..... 35
Average or Mean person-days by Activity in the Coastal \& Ocean Areas in GRNMS ..... 36
Sources of Information Used. ..... 36
Level of Trust of Information Sources Used ..... 38
How Users prefer to receive information. ..... 40
User's Familiarity with GRNMS Regulations ..... 40
User's Perceptions of Resource Conditions in GRNMS. ..... 41
Factors that influenced User Choice of going to GRNMS to do Activities ..... 43
Conclusions ..... 43
Chapter 4: Comparisons of Users and Non-users for Version 2 Survey Responses ..... 45
Socioeconomic/Demographic Profiles... ..... 45
Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS. ..... 48
Average or Mean Number of Person-days of Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 49
Concern about the Health of Coastal \& Ocean Areas in and around Georgia Outside GRNMS ..... 49
Concern about the Health of Coastal \& Ocean Areas in GRNMS ..... 51
Ways Users and Non-users Value Coastal \& Ocean Resources/Marine Environment ..... 53
Activities of Actions Users and Non-users would do to ensure that coastal and Ocean resources are used sustainably and available for future generations to enjoy. ..... 55
Support for various Coastal \& Ocean Resource Protection Strategies. ..... 57
References. ..... 62
Appendix A: User and Non-user Version 2 Questionnaires ..... 64
PageNumber

## List of Tables

| Table | Page |
| :--- | :---: |
| Number | Number |

A.1.1 Information included by Version of Survey by User Group and where Reported and Technical details can be found. ..... 2
A.1.2 Sample Sizes and Response Rates for the Surveys of Users and Non-users of GRNMS ..... 4
A.2.1a Tests for Differences between Users Version 1 and Version 2: Demographic Profiles ..... 6
A.2.1b Tests for Differences between Users who responded to Both Versions 1 and 2: Demographic Profiles ..... 8
A.2.2a Tests for Differences between Users Version 1 and Versions 2: Demographic Means ..... 9
A.2.2b Tests for Differences between Users who Responded to both Versions 1 and 2: Demographic Means ..... 10
A.2.3a Tests for Differences between Users Version 1 and Versions 2 : Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 11
A.2.3b Tests for Differences between Users who Responded to both Versions 1 and 2 : Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 12
A.2.4a Tests for Differences between Users Version 1 and Versions 2: Activity Participation in Coastal and Ocean Areas in GRNMS ..... 14
A.2.4b Tests for Differences between Users who responded to both Versions 1 and 2: Activity Participation in Coastal and Ocean Areas in GRNMS ..... 15
A.2.5a Tests for Differences between Users Version 1 and Versions 2: Mean Person-days by Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 16
A.2.5b Tests for Differences between Users who Responded to both Versions 1 and 2: Mean Person-days by Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS. ..... 16
A.2.6a Tests for Differences between Users Version 1 and Versions 2: Mean Person-days by Activity in Coastal and Ocean Areas in GRNMS ..... 17
A.2.6b Tests for Differences between Users who Responded to both Versions 1 and 2: Mean Person-days by Activity in Coastal and Ocean Areas in GRNMS ..... 17
A.2.7a Tests for Differences between Users Version 1 and Versions 2: Sources of Information Used. ..... 19

## List of Tables

| Table | Page |
| :--- | :---: |
| Number | Number |

A.2.7b Tests for Differences between Users who Responded to both Versions 1 and 2: Sources of Information Used ..... 20
A.2.8a Tests for Differences between Users Version 1 and Versions 2: Trust Level of Information Sources Used Most ..... 22
A.2.9a Tests for Differences between Users Version 1 and Versions 2: How they Prefer to Receive Information about GRNMS ..... 23
A.2.9b Tests for Differences between Users who responded to both Versions 1 and 2: How they Prefer to Receive Information about GRNMS ..... 24
A.2.10a Tests for Differences between Users Version 1 and Versions 2: Familiarity with GRNMS Regulations ..... 24
A.2.10b Tests for Differences between Users who Responded to both Versions 1 and 2: Familiarity with GRNMS Regulations ..... 25
A.2.11a Perceptions of Conditions of Resources in GRNMS: Users Version 1 and Versions 2 ..... 26
A.2.11b Perceptions of Conditions of Resources in GRNMS: Users who responded to both Versions 1 and 2 . ..... 27
A.2.12a Factors that influenced the Choice of Going to GRNMS to Do Activities: Users Version 1 and Versions 2 ..... 29
A.2.12b Factors that influenced the Choice of Going to GRNMS to Do Activities: Users who Responded to both Versions 1 and 2 ..... 30
A.3.1 Tests for Differences between Users Version 1 and Pooled Users Versions 1 \& 2: Demographic Profiles ..... 32
A.3.2 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Demographic Means ..... 33
A.3.3 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 34
A.3.4 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Activity Participation in Coastal and Ocean Areas in GRNMS ..... 35
A.3.5 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Mean Person-days by Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 36
A.3.6 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Mean Person-days by Activity in Coastal and Ocean Areas in GRNMS ..... 36

## List of Tables

| Table | Page |
| :--- | :---: |
| Number | Number |

A.3.7 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Sources of Information Used ..... 37
A.3.8 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Trust Level of Information Sources Used Most ..... 39
A.3.9 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: How they Prefer to Receive Information about GRNMS ..... 40
A.3.10 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Familiarity with GRNMS Regulations ..... 41
A.3.11 Perceptions of Conditions of Resources in GRNMS: Users Version 1 and Versions 1 \& 2 Pooled ..... 42
A.3.12 Factors that influenced the Choice of Going to GRNMS to Do Activities: Users Version 1 and Versions 1 \& 2 Pooled. ..... 44
A.4.1 Tests for Differences between Users and Non-users Version 2: Demographic Profiles ..... 46
A.4.2 Tests for Differences between Users and Non-users Version 2:
Demographic Means ..... 47
A.4.3 Tests for Differences between Users and Nonusers Version 2: Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 48
A.4.4 Tests for Differences between Users and Non-users Version 2: Mean Person-days by Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS ..... 49
A.4.5 Concern about the Health of Coastal \& Ocean Areas in and around Georgia Outside of GRNMS: Users vs Non-users Version 2 Surveys ..... 50
A.4.6 Concern about the Health of Coastal \& Ocean Areas inside GRNMS: Users vs Non-users Version 2 Surveys ..... 52
A.4.7 Ways Users versus Non-users of GRNMS Value Coastal \& Ocean Resources/Marine Environment Version 2 Surveys ..... 54
A.4.8 Activities or Actions Users versus Non-users of GRNMS Would Do to ensure that coastal and ocean resources are used sustainably and available for future generations to enjoy Version 2 Surveys ..... 56
A.4.9 Comparisons of Users and Non-users of GRNMS on Support for Various Coastal \& Ocean Resource Protection Strategies Version 2 Surveys ..... 58
A.4.10 Comparisons of Users and Non-users of GRNMS on Support for Marine Zoning: Version 2 Surveys ..... 59

## List of Tables

| Table | Page |
| :--- | :---: |
| Number | Number |A.4.11 Maximum Acceptable Percent Impact on Various Activities from MarineReserves in GRNMS: Users versus Non-users Version 2 Surveys...60

A.4.12 Maximum Acceptable Percent Impact on Various Activities from Research Only Areas in GRNMS: Users versus Non-users Version 2 Surveys ..... 61

## Introduction

In 2010, a baseline study of users and non-users of Gray’s Reef National Marine Sanctuary (GRNMS) was initiated. Mail surveys were designed in 2010 and implemented in 2011 for users and non-users and again in 2012 for users.

The study provides baseline data on the knowledge, attitudes and perceptions of users and nonusers of GRNMS in regard to management strategies and regulations. It also provides information on socioeconomic/demographic profiles, activity participation and use of coastal and ocean waters off the Georgia coast both inside and outside GRNMS. Table A.1.1 shows the types of information obtained by version of the survey for each user group (e.g. users of GRNMS versus non-users of GRNMS) and where one can find the summaries of survey results and the technical details on analyses of the survey data.

This is the technical appendix to the main report (Leeworthy 2013) and documents how the work was conducted and provides details of the statistical tests performed.

## Chapter 1: Surveys of Users and Non-users of GRNMS

Separate surveys of users and non-users of GRNMS were conducted. Non-users were limited to the people living in households of the State of Georgia. The surveys collected data on 16 major types of information (Table A.1.1).

For users and non-users, two versions of the surveys were designed to address all the issues found in Table A.1.1. Both versions of the survey were implemented for separate samples of non-users of GRNMS in 2011. For users, Version 1 of the survey was implemented in 2011. Version 2, which obtains information about attitudes on selected management strategies for coastal and ocean resources both inside and outside GRNMS was implemented in 2012. This report provides the results of implementing Version 2 of the User Surveys and provides comparisons with non-users on key coastal and ocean resource management/policy strategies.

Sampling Frames. For users, the sampling frame was from a list of users observed in the GRNMS by the Georgia Department of Natural Resources (GADNR). GADNR randomly either boards boats or writes down the boat registration number of the boats observed in the GRNMS. The random boarding is not related to enforcement actions. For boats boarded, name and address of the boat owner/operator is obtained. GRNMS staff received a list containing 249 names and addresses and/or boat registration numbers. Boat registration files were used to obtain names and addresses for the boat registration numbers. In subsequent efforts, GADNR added 21 names and addresses that were used for the 2012 Version 2 survey.

For non-users, two samples of households were purchased from INFO USA, Inc., which maintains databases of households for survey research. Each sample consisted of the names and addresses for 500 households and was stratified by coastal and non-coastal counties. Unlike most states, Georgia has very few households living in coastal counties because of the terrain, so we over-sampled coastal counties.

Table A.1.1. Information included by Version of Survey by User Group and where Reported and Technical details can be found

|  | Information Included in: |  |
| :--- | :---: | :---: | :---: |
| Information type/User Group | Both |  |

1. Demographics (e.g. age, sex, race/ethnicity, educational attainment, household income, employment status, household size, household type, boat ownership, boat length, number of people aboard boat, membership in organizations, participation in fishing tournaments) ${ }^{1,2}$

| Users of GRNMS | x | x | x |
| :--- | :--- | :--- | :--- |
| Non-users | x | x | x |

2. Participation and Use by Activity in and around coastal \& ocean waters off Georgia outside GRNMS. ${ }^{1,2}$
Users of GRNMS $\quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$
Non-users $\quad$ x $\quad$ x
3. Participation and Use by Activity in coastal \& ocean waters in GRNMS

Users of GRNMS ${ }^{1,2}$
x
x
Non-users
4. Sources of Information Used ${ }^{1,2}$

Users of GRNMS x
Non-users x
5. Level of Trust of Sources of Information Used ${ }^{1,2}$
Users of GRNMS $\quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$

Non-users x
$\mathrm{x} \quad \mathrm{x}$
6. Ways like to receive information ${ }^{1,2}$

Users of GRNMS x
Non-users
x
x
7. Familiarity with GRNMS Regulations ${ }^{1,2}$

Users of GRNMS x
Non-users x
x
8. Factors that influenced the choice of GRNMS to do activities

Users of GRNMS ${ }^{1,2}$
x
x
x
Non-users
9. Attitudes about Management Strategies \& Regulations in GRNMS ${ }^{1}$

Users of GRNMS x
Non-users x
10. Perceptions of the Status of Conditions of Resources in GRNMS

Users of GRNMS ${ }^{1,2}$ x x
x
x
Non-users

1. Results found in Leeworthy (2012a) and technical details in Leeworthy (2012b).
2. Results found in Leeworthy (2013) and technical details in this report.

Table A.1.1. Information included by Version of Survey by User Group and where Reported and Technical details can be found (continued)

| Information type/User Group | Information Included in: |  |  |
| :---: | :---: | :---: | :---: |
|  | Both <br> Versions | Version 1 | Version 2 |
| 11. Concern for the Health of Coastal \& Ocean Resources in the Coastal and Ocean Areas in and around Georgia outside GRNMS ${ }^{2}$ |  |  |  |
| Users of GRNMS |  |  | x |
| Non-users |  |  | x |
| 12. Concern for the Health of Coastal \& Ocean Resources in GRNMS ${ }^{2}$ |  |  |  |
| Users of GRNMS |  |  | x |
| Non-users |  |  | x |
| 13. Ways Value Ocean \& Coastal Resources/Marine Environment ${ }^{2}$ |  |  |  |
| Users of GRNMS |  |  | x |
| Non-users |  |  | x |
| 14. Activities or Actions Would Do to ensure that ocean or coastal resources are used sustainably and avaialble for future generations to enjoy ${ }^{2}$ |  |  |  |
| Users of GRNMS |  |  | x |
| Non-users |  |  | x |
| 15. Support for various management strategies in the coastal \& ocean areas in and around Georgia outside GRNMS ${ }^{2}$ |  |  |  |
| Users of GRNMS |  |  | x |
| Non-users |  |  | x |
| 16. Support for various management strategies in the coastal \& ocean areas in GRNMS ${ }^{2}$ |  |  |  |
| Users of GRNMS |  |  | x |
| Non-users |  |  | x |

1. Results found in Leeworthy (2012a) and technical details in Leeworthy (2012b).
2. Results found in Leeworthy (2013) and technical details in this report.

Response Rates. For both users and non-users the Dillman Method (Dillman 1978) of mail surveys was used. A full survey was sent out, and if not returned within two weeks, a post card reminder was sent. If a completed survey was not received after an additional two weeks, a full survey package was sent. In version 1 of the user surveys, there were 249 names and addresses of which 94 were undeliverable resulting in 155 net eligible respondents. Of these respondents 79 or $50.97 \%$ responded (Table A.1.2). In version 2 of the user survey, 21 new names and addresses for users received from GADNR were added to the 155 net eligible respondents obtained from implementing version 1 for a total of 176 net eligible respondents. Of these 176 eligible respondents, 44 completed questionnaires were returned for a response rate of $25 \%$ (Table A.1.2).

For non-users Version 1, 500 surveys were mailed out with 44 undeliverable addresses resulting in 456 net eligible respondents. Of these respondents, 83 or $18.2 \%$ responded. For non-users Version 2, 500 surveys were mailed out with 54 undeliverable addresses resulting in 446 net eligible respondents. Of these respondents 60 or $13.45 \%$ responded (Table A.1.2).

Table A.1.2. Sample Sizes and Response Rates for the Surveys of Users and Non-users of GRNMS

|  | Users <br> Version 1 | Users <br> Version 2 | Non-users <br> Version 1 | Non-users <br> Version 2 |
| :--- | :---: | :---: | :---: | :---: |
| Original Mailing List | 249 | 155 | 500 | 500 |
| Undeleiverable Addresses | 94 | 0 | 44 | 54 |
| New Additions to List Version 2 | $\mathrm{~N} / \mathrm{A}$ | 21 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| Net Eligible Respondents | 155 | 176 | 456 | 446 |
| Responded | 79 | 44 | 83 | 60 |
| Net Response Rate | $50.97 \%$ | $25.00 \%$ | $18.20 \%$ | $13.45 \%$ |

Non-response Bias/Sample Weighting. Given the low response rates for non-users, nonresponse bias analysis was conducted and sample weights created to adjust for non-response bias (For details see Technical Appendix, Leeworthy 2012b). People of Hispanic ethnicity had very low response rates, too low for sample weighting to be effective, so Hispanic people are not represented in the non-user surveys. Both version samples respondents were significantly different from the general Georgia population for demographic factors, sex, age, race/ethnicity, educational attainment and household income. However, for non-response bias to exist requires that these factors are also related to the answers to the survey questions. There were only a few questions for which there were any statistically significant different responses by these demographic factors, so there is some non-response bias, but it is small and was adjusted for by sample weighting. Again for details of the non-response bias analysis and the sample weighting see the Technical Appendix (Leeworthy 2012b).

## Statistical Tests

When the terms "significant difference" or "statistically significant difference" are used, it means that formal statistical tests were conducted. For categorical variable distributions, Chi-Square and Jonckheere-Terpstra (JT) tests in SAS (Statistical Analysis System Version 9.1) tests were conducted. The JT test is a non-parametric test for ordered differences among classes. Both one-sided and two-sided test were conducted, but for applications here, the two-sided tests are appropriate. For scores using 5-point Likert scales or continuous variables such as person-days or age of respondents, tests of sample means were conducted using t-tests (Proc t-test in SAS). Level of significance for all tests was at the .05 level of significance or the 95 percent confidence level.

## Chapter 2: Users Version 1 Compared to Users Version 2

In this chapter users that responded to version 1 of the survey are compared to users of version 2 of the survey. Comparisons are done for those questions that were common to both versions (see Table A.1.1 in Chapter 1). Two set of comparisons were conducted: 1) a comparison of all respondents to each version of the survey ( $\mathrm{N}=77$ for version 1 and $\mathrm{N}=44$ for version 2 ) and 2 ) a comparison of those who responded to both versions ( $\mathrm{N}=33$ ). In this latter comparison, the tests are for statistically different answers to the same questions one year later. The results of these tests were used to make the decision of using version 2 answers when pooling the data across versions.

The results of the statistical tests of the two sets of comparisons are presented here. Tables labeled with an "a" suffix are the comparisons of all respondents to each version of the survey, while tables with a "b" suffix are the comparisons for those who responded to both versions of the survey. For distributions of variables, Chi-square and Jonckheere-Terpstra (JT) tests in SAS (Statistical Analysis System Version 9.1, Proc Freq) were used, and for sample means a t-test in SAS (Proc T-test) was used. The JT test is a nonparametric test for ordered differences in classes. Both one-side and two-sided tests were performed and reported, but for application to the data here, the two-sided tests are appropriate.

## Socioeconomic/Demographic Profiles

Comparisons of All respondents to each Survey Version. There was only one statistically significant difference for any of the socioeconomic/demographic factors between respondents to the two versions of the survey and this was for the mean age of the respondent. This would be expected since every respondent is one year older, but the mean age difference was more than one year (Table A.2.1a and Table 2.2a). Although a weak test of the existence of non-response bias, there was only one difference despite the fact that the response rate to version 1 was over $50 \%$, while the response rate to version 2 was only $25 \%$ (Table A.1.2, Chapter 1).

Comparisons of Respondents to both Survey Versions. There were no statistically significant differences for any of the socioeconomic/demographic factors for responses to version 1 and 2 surveys (Table A.2.1b and Table A.2.2b). These are the same 33 respondents, so we wouldn't expect too much change for these households, so the results here are not surprising.

Table A.2.1a. Tests for Differences between Users Version 1 and Version 2: Demographic Profiles

|  | Users V1 | Users V2 | Chi-square | JT Test |
| :---: | :---: | :---: | :---: | :---: |
| Demographic Factor | (percent) | (percent) | Sigificance ${ }^{1}$ | Significance ${ }^{2}$ |
| Age |  |  | 0.5953 | 0.0666/0.1331 |
| 18-24 | 1.33 | 0.00 |  |  |
| 25-34 | 2.67 | 2.27 |  |  |
| 35-49 | 29.33 | 18.18 |  |  |
| 50-64 | 52.00 | 59.09 |  |  |
| 65 and over | 14.67 | 20.45 |  |  |
| Sex |  |  | 1.00 | 1.00/1.00 |
| Male | 100.00 | 100.00 |  |  |
| Female | 0.00 | 0.00 |  |  |
| Race |  |  | 1.00 | 1.00/1.00 |
| White | 100.00 | 100.00 |  |  |
| Black or African American | 0.00 | 0.00 |  |  |
| Asian | 0.00 | 0.00 |  |  |
| Native Hawaiian or Pacific Islander | 0.00 | 0.00 |  |  |
| Educational Attainment |  |  | 0.8897 | 0.4525/0.9051 |
| 8th grade of less | 3.95 | 2.33 |  |  |
| 9th to 11th grade | 1.32 | 4.65 |  |  |
| High School Grad or Equivalent | 25.00 | 23.26 |  |  |
| Some College | 31.58 | 27.91 |  |  |
| Associates degree | 2.63 | 6.98 |  |  |
| Bachelors degree | 21.05 | 18.60 |  |  |
| Masters degree | 6.58 | 6.98 |  |  |
| Professional degree | 3.95 | 6.98 |  |  |
| Doctors degree | 3.95 | 2.33 |  |  |
| Household Income (Before taxes) |  |  | 0.655 | 0.3753/0.7506 |
| Less than \$5,000 | 0.00 | 0.00 |  |  |
| \$5,000-\$9,999 | 0.00 | 2.44 |  |  |
| \$10,000-\$14,999 | 0.00 | 0.00 |  |  |
| \$15,000-\$19,999 | 1.39 | 0.00 |  |  |
| \$20,000-\$24,999 | 0.00 | 2.44 |  |  |
| \$25,000-\$29,999 | 1.39 | 0.00 |  |  |
| \$30,000-\$34,999 | 1.39 | 0.00 |  |  |
| \$35,000-\$39,999 | 2.78 | 0.00 |  |  |
| \$40,000-\$44,999 | 1.39 | 2.44 |  |  |
| \$45,000-\$49,999 | 4.17 | 2.44 |  |  |
| \$50,000-\$59,999 | 4.17 | 4.88 |  |  |
| \$60,000-\$74,999 | 12.50 | 9.76 |  |  |
| \$75,000-\$99,999 | 19.44 | 24.39 |  |  |
| \$100,000-\$149,999 | 23.61 | 34.15 |  |  |
| \$150,000 or more | 27.78 | 17.07 |  |  |
| Employment Status (\% yes) |  |  |  |  |
| unemployed | 0.00 | 0.00 | 1.00 | 1.00/1.00 |
| employed full-time | 75.00 | 68.18 | 0.4202 | 0.2111/0.4221 |
| employed part-time | 7.89 | 2.27 | 0.2054 | 0.1617/0.2073 |
| retired | 17.11 | 25.00 | 0.2975 | 0.1497/0.2995 |
| student | 1.32 | 0.00 | 0.4448 | 0.2234/0.4467 |
| homemaker | 0.00 | 2.27 | 0.1869 | 0.0944/0.1888 |
|  |  |  |  |  |

Table A.2.1a. Tests for Differences between Users Version 1 and Version 2: Demographic Profiles (continued)

|  | Users V1 | Users V2 | Chi-square | JT Test |
| :--- | :---: | :---: | :---: | :---: |
| Demographic Factor |  |  |  | (percent) |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and versions 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

Table A.2.1b. Tests for Differences between Users who ReSponded to Both Versions 1 and 2: Demographic Profiles

|  | Users V1 | Users V2 | Chi-square | JT Test |
| :---: | :---: | :---: | :---: | :---: |
| Demographic Factor | (percent) | (percent) | Sigificance ${ }^{1}$ | Significance ${ }^{2}$ |
| Age |  |  | 0.7097 | 0.2087/0.4175 |
| 18-24 | 0.00 | 0.00 |  |  |
| 25-34 | 0.00 | 0.00 |  |  |
| 35-49 | 24.24 | 18.18 |  |  |
| 50-64 | 63.64 | 63.64 |  |  |
| 65 and over | 12.12 | 18.18 |  |  |
| Sex |  |  | 1.00 | 0.50/1.00 |
| Male | 100.00 | 100.00 |  |  |
| Female | 0.00 | 0.00 |  |  |
| Race |  |  | 1.00 | 0.50/1.00 |
| White | 100.00 | 100.00 |  |  |
| Black or African American | 0.00 | 0.00 |  |  |
| Asian | 0.00 | 0.00 |  |  |
| Native Hawaiian or Pacific Islander | 0.00 | 0.00 |  |  |
| Educational Attainment |  |  | 0.5623 | 0.4187/0.8373 |
| 8th grade of less | 6.06 | 3.13 |  |  |
| 9th to 11th grade | 0.00 | 6.25 |  |  |
| High School Grad or Equivalent | 2.27 | 28.13 |  |  |
| Some College | 45.45 | 31.25 |  |  |
| Associates degree | 3.03 | 6.25 |  |  |
| Bachelors degree | 12.12 | 15.63 |  |  |
| Masters degree | 3.03 | 0.00 |  |  |
| Professional degree | 0.00 | 6.25 |  |  |
| Doctors degree | 3.03 | 3.13 |  |  |
| Household Income (Before taxes) |  |  | 0.5798 | 0.4490/0.8981 |
| Less than \$5,000 | 0.00 | 0.00 |  |  |
| \$5,000-\$9,999 | 0.00 | 3.33 |  |  |
| \$10,000-\$14,999 | 0.00 | 0.00 |  |  |
| \$15,000-\$19,999 | 0.00 | 0.00 |  |  |
| \$20,000-\$24,999 | 0.00 | 3.33 |  |  |
| \$25,000-\$29,999 | 3.23 | 0.00 |  |  |
| \$30,000-\$34,999 | 0.00 | 0.00 |  |  |
| \$35,000-\$39,999 | 0.00 | 0.00 |  |  |
| \$40,000-\$44,999 | 0.00 | 3.33 |  |  |
| \$45,000-\$49,999 | 6.45 | 0.00 |  |  |
| \$50,000-\$59,999 | 3.23 | 0.00 |  |  |
| \$60,000-\$74,999 | 6.45 | 6.67 |  |  |
| \$75,000-\$99,999 | 25.81 | 26.67 |  |  |
| \$100,000-\$149,999 | 35.48 | 43.33 |  |  |
| \$150,000 or more | 19.35 | 13.33 |  |  |
| Employment Status (\% yes) |  |  |  |  |
| unemployed | 0.00 | 0.00 | 1.00 | 0.50/1.00 |
| employed full-time | 78.79 | 69.70 | 0.3984 | 0.2010/0.4020 |
| employed part-time | 6.06 | 3.03 | 0.5546 | 0.2788/0.5576 |
| retired | 21.21 | 21.21 | 1.00 | 0.50/1.00 |
| student | 0.00 | 0.00 | 1.00 | 0.50/1.00 |
| homemaker | 0.00 | 3.03 | 0.3136 | 0.1587/0.3173 |

Table A.2.1b. Tests for Differences between Users who Responded to both Versions 1 and 2: Demographic Profiles (continued)

|  | Users V1 | Users V2 | Chi-square | JT Test |
| :---: | :---: | :---: | :---: | :---: |
| Demographic Factor | (percent) | (percent) | Sigificance ${ }^{1}$ | Significance ${ }^{2}$ |
| Household Type |  |  | 0.6512 | 0.4568/0.9136 |
| Single adult with no children under 18 | 12.12 | 3.13 |  |  |
| Single adult with children under 18 | 0 | 0 |  |  |
| Two adults with no children under 18 | 48.48 | 62.5 |  |  |
| Two adults with children under 18 | 18.18 | 15.63 |  |  |
| More than two adults with no children under 18 | 12.12 | 9.38 |  |  |
| More than two adults with children under 18 | 9.09 | 9.38 |  |  |
|  |  |  |  |  |
| Boat Ownership (\% Yes) | 96.97 | 96.88 | 0.9824 | 0.4913/0.9825 |
|  |  |  |  |  |
| Membership in Organizations (\% Yes) |  |  |  |  |
| Fishing | 54.55 | 51.52 | 0.8052 | 0.4033/0.8066 |
| Diving | 6.06 | 0.00 | 0.151 | 0.2462/0.4923 |
| Environmental | 24.24 | 9.09 | 0.0986 | 0.0506/0.1012 |
| Chamber of Commerce | 15.15 | 12.12 | 0.7198 | 0.3609/0.7219 |
|  |  |  |  |  |
| 1. A value less than ( $<0.05$ is statistically significant with 95 percent confidence or higher. |  |  |  |  |
| 2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes |  |  |  |  |
| (version 1 versus versions 2 responses). It tests the null hypothesis that the distributions of the response variable |  |  |  |  |
| does differ among classes. The number for signficance on the left side is the one-tailed test, while the |  |  |  |  |
| second number for significance is a two-tailed test. A value of less than ( $<0.05$ is statisitically |  |  |  |  |
| significant with 95 percent confidence or higher. |  |  |  |  |

Table A.2.2a. Tests for Differences between Users Version 1 and Versions 2: Demographic Means

|  | Users V1 | Users V2 | T-test <br> (mean) | (mean) |
| :--- | :---: | :---: | :---: | :---: |
| Demographic Factor |  | Significance ${ }^{1}$ |  |  |
| Age | 52.55 | 56.59 | $\mathbf{0 . 0 4 0 9}$ |  |
| Household Size | 2.54 | 2.56 | 0.9230 |  |
| Number in Household 18 or over | 2.04 | 2.12 | 0.6020 |  |
| Number in Household less than 18 | 0.51 | 0.39 | 0.5025 |  |
| Boat Size (length in feet) | 24.57 | 24.07 | 0.5964 |  |
| Number of People aboard the boat | 3.09 | 3.10 | 0.9760 |  |
|  |  |  |  |  |
| 1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher. |  |  |  |  |

Table A.2.2b. Tests for Differences between Users who Responded to both Versions 1 and 2:
Demographic Means

|  | Users V1 <br> (mean) | Users V2 <br> (mean) | T-test <br> Significance ${ }^{1}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| Demographic Factor |  |  |  |  |
| Age | 54.88 | 56.88 | 0.3775 |  |
| Household Size | 2.51 | 2.67 | 0.6039 |  |
| Number in Household 18 or over | 2.15 | 2.12 | 0.8876 |  |
| Number in Household less than 18 | 0.36 | 0.47 | 0.6570 |  |
| Boat Size (length in feet) | 24.18 | 24.17 | 0.9916 |  |
| Number of People aboard the boat | 3.09 | 2.97 | 0.5714 |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

## Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS

Comparisons of All respondents to each Survey Version. There were no statistically significant differences for participation in any of the recreation activities (Table A.2.3a). Again, even though a weak test for non-response bias, for key survey parameters estimated there are no differences. So estimates are robust to survey response rates.

Comparisons of Respondents to both Survey Versions. Again, there are no statistically significant differences for participation for any of the recreation activities (Table A.2.3b).

## Activity Participation in Coastal and Ocean Areas in GRNMS

Comparisons of All respondents to each Survey Version. There were no statistically significant differences for participation in any of the recreation activities (Table A.2.4a). Again estimates are robust to survey response rates.

Comparisons of Respondents to both Survey Versions. Again, there were no statistically significant differences for participation in any recreation activities (Table A.2.4b).

Table A.2.3a. Tests for Differences between Users Version 1 and Versions 2 : Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS

|  | Users V1 | Users V2 | Chi-square | JT Test |
| :--- | :---: | :---: | :---: | :---: |
| (percent) | (percent) | Significance ${ }^{1}$ | Significance ${ }^{2}$ |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and versions 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

Table A.2.3b. Tests for Differences between Users who Responded to both Versions 1 and 2 : Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS

|  | Users V1 | Users V2 | Chi-square | JT Test |
| :---: | :---: | :---: | :---: | :---: |
| Activity | (percent) | (percent) | Significance ${ }^{1}$ | Significance ${ }^{2}$ |
| Recreational bottom fishing | 87.88 | 93.94 | 0.3918 | 0.1977/0.3954 |
| Recreational fishing - trolling or drfting in mid or top water | 87.88 | 93.94 | 0.3918 | 0.1977/0.3954 |
| Recreational spear fishing with power heads | 6.06 | 3.03 | 0.5546 | 0.2788/0.5576 |
| Recreational spear fishing without power heads | 12.12 | 12.12 | 1.0000 | 0.50/1.00 |
| SCUBA diving (taking things) | 9.09 | 9.09 | 1.0000 | 0.50/1.00 |
| SCUBA diving (don't take things) | 18.18 | 12.12 | 0.4923 | 0.2478/0.4956 |
| Whale watching or other wildlife viewing activities | 42.42 | 45.45 | 0.8041 | 0.4028/0.8056 |
| Sailing | 6.06 | 6.06 | 1.0000 | 0.50/1.00 |
| Beach Activities | 72.73 | 81.82 | 0.3782 | 0.1909/0.3819 |
| Surfing | 6.06 | 12.12 | 0.3918 | 0.1977/0.3954 |
| Wind Surfing/Kite boarding | 6.06 | 12.12 | 0.3918 | 0.1977/0.3955 |
| Personal Watercraft Use | 18.18 | 15.15 | 0.7412 | 0.3715/0.7431 |
| Shorebird Watching | 36.36 | 42.42 | 0.6144 | 0.3085/0.6171 |
| Aggregate Activities |  |  |  |  |
| Any Fishing | 93.94 | 93.94 | 1.0000 | 0.50/1.00 |
| Any Spear Fishing | 12.12 | 12.12 | 1.0000 | 0.50/1.00 |
| Any SCUBA Diving | 18.18 | 15.15 | 0.7412 | 0.3715/0.7431 |
| Any Consumptive | 93.94 | 93.94 | 1.0000 | 0.50/1.00 |
| Any Nonconsumptive | 45.45 | 48.48 | 0.8052 | 0.4033/0.8066 |
| Only Consumptive | 51.52 | 45.45 | 0.6223 | 0.3125/0.6250 |
| Only Nonconsumptive | 3.03 | 0.00 | 0.3136 | 0.1587/0.3173 |

1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here version 1 versus versions 2 responses). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Average or Mean Person-days by Activity in the Coastal \& Ocean Areas in and around Georgia Outside GRNMS

Comparisons of All respondents to each Survey Version. There was only one statistically significant difference and that was for "Recreational fishing - trolling or drifting in mid or top water". Version 2 respondents spent significantly more days doing this activity than version 1 respondents (Table A.2.5a). Version 2 respondents also did more days of "Recreational bottom fishing", but this difference was not statistically significant. Small sample sizes for days of activity can results in higher variations in estimates because days can range from 1 to 365 days
per year (outliers were eliminated, see Leeworthy 2012b), so what appear to be relatively large differences do not translate into statistically significant differences. Pooling the data across versions of the data can increase sample sizes and reduce variations in the estimates. This is done in Chapter 3.

Comparisons of Respondents to both Survey Versions. There were no statistically significant differences for any of the estimates of mean person-days of activity between the samples of the two survey versions despite what appear to be somewhat large differences (Table A.2.5b). Again, this is due to relatively small sample sizes and higher variations. Again, pooling the data across versions can reduce variation and produce more robust estimates of person-days of activity (Chapter 3).

Table A.2.4a. Tests for Differences between Users Version 1 and Versions 2: Activity Participation in Coastal and Ocean Areas in GRNMS

|  | Users V1 | Users V2 | Chi-square | JT Test |
| :---: | :---: | :---: | :---: | :---: |
| Activity | (percent) | (percent) | Significance ${ }^{1}$ | Significance ${ }^{2}$ |
| Recreational bottom fishing | 81.58 | 79.55 | 0.7851 | 0.3930/0.7859 |
| Recreational fishing - trolling or drfting in mid or top water | 89.47 | 86.36 | 0.6091 | 0.3053/0.6106 |
| Recreational spear fishing with power heads | 2.63 | 0.00 | 0.2779 | 0.1399/0.2799 |
| Recreational spear fishing without power heads | 3.95 | 6.82 | 0.4868 | 0.2443/0.4887 |
| SCUBA diving (taking things) | 1.32 | 4.55 | 0.2748 | 0.1384/0.2768 |
| SCUBA diving (don't take things) | 9.21 | 9.09 | 0.9825 | 0.4913/0.9826 |
| Whale watching or other wildlife viewing activities | 21.05 | 34.09 | 0.1159 | 0.0587/0.1174 |
| Sailing | 2.63 | 2.27 | 0.9034 | 0.4519/0.9038 |
| Aggregate Activities |  |  |  |  |
| Any Fishing | 94.81 | 93.18 | 0.7129 | 0.3570/0.7141 |
| Any Spear Fishing | 5.19 | 9.09 | 0.4067 | 0.2043/0.4087 |
| Any SCUBA Diving | 9.09 | 11.36 | 0.6874 | 0.3443/0.6887 |
| Any Consumptive | 94.81 | 93.18 | 0.7129 | 0.3570/0.7141 |
| Any Nonconsumptive | 27.27 | 36.36 | 0.2965 | 0.1492/0.2985 |
| Only Consumptive | 68.83 | 56.82 | 0.1841 | 0.0930/0.1860 |
| Only Nonconsumptive | 1.30 | 0.00 | 0.4478 | 0.2248/0.4497 |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and versions 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

Table A.2.4b. Tests for Differences between Users who Responded to both Versions 1 and 2: Activity Participation in Coastal and Ocean Areas in GRNMS

|  | Users V1 | Users V2 | Chi-square | JT Test |
| :---: | :---: | :---: | :---: | :---: |
| Activity | (percent) | (percent) | Significance ${ }^{1}$ | Significance ${ }^{2}$ |
| Recreational bottom fishing | 87.88 | 84.45 | 0.7198 | 0.3609/0.7219 |
| Recreational fishing - trolling or drfting in mid or top water | 93.94 | 84.85 | 0.2304 | 0.1170/0.2340 |
| Recreational spear fishing with power heads | 3.03 | 0.00 | 0.3136 | 0.1587/0.3173 |
| Recreational spear fishing without power heads | 6.06 | 6.06 | 1.0000 | 0.50/1.00 |
| SCUBA diving (taking things) | 3.03 | 6.06 | 0.5546 | 0.2788/0.5576 |
| SCUBA diving (don't take things) | 15.15 | 9.09 | 0.4507 | 0.2271/0.4541 |
| Whale watching or other wildlife viewing activities | 27.27 | 42.42 | 0.1965 | 0.1000/0.1999 |
| Sailing | 0.00 | 3.03 | 0.3136 | 0.1587/0.3173 |
| Aggregate Activities |  |  |  |  |
| Any Fishing | 96.97 | 93.94 | 0.5546 | 0.2788/0.5576 |
| Any Spear Fishing | 9.09 | 9.09 | 1.0000 | 0.50/1.00 |
| Any SCUBA Diving | 15.15 | 12.12 | 0.7198 | 0.3609/0.7219 |
| Any Consumptive | 96.97 | 93.94 | 0.5546 | 0.2788/0.5576 |
| Any Nonconsumptive | 33.33 | 42.42 | 0.4465 | 0.2250/0.4500 |
| Only Consumptive | 63.64 | 51.52 | 0.3191 | 0.1614/0.3228 |
| Only Nonconsumptive | 0.00 | 0.00 | 1.0000 | 0.50/1.00 |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here version 1 versus versions 2 responses). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Average or Mean Person-days by Activity in the Coastal \& Ocean Areas in GRNMS

Comparisons of All respondents to each Survey Version. There was only one statistically significant difference and that was for "recreational bottom fishing". Users in version 2 did over twice as many days of this activity than those who responded to version 1 of the survey (Table A.2.6a).

Comparisons of Respondents to both Survey Versions. There were no statistically significant differences (Table A.2.6b). These same 33 users did not significantly change the number of days they did any of the activities in GRNMS between the two years. The difference in the estimates for "recreational bottom fishing" is quite large, but again variation in the number of days is affected by relatively small sample sizes.

Table A.2.5a. Tests for Differences between Users Version 1 and Versions 2: Mean Person-days by
Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS

|  | Users V1 <br> $($ mean $)$ | Users V2 <br> (mean) | T-test <br> Significance $^{1}$ |
| :--- | :---: | :---: | :---: | :---: |
| User Group/Activity |  |  | 0.1992 |
| Recreational bottom fishing | 21.81 | 29.14 | $\mathbf{0 . 0 3 2 8}$ |
| Recreational fishing - trolling or drfting in mid or top water | $\mathbf{1 3 . 8 6}$ | $\mathbf{2 1 . 9 5}$ | 0.4038 |
| Recreational spear fishing with power heads | 0.28 | 0.09 | 0.4557 |
| Recreational spear fishing without power heads | 0.42 | 0.22 | 0.9201 |
| SCUBA diving (taking things) | 0.13 | 0.14 | 0.6381 |
| SCUBA diving (don't take things) | 0.38 | 0.52 | 0.1400 |
| Whale watching or other wildlife viewing activities | 5.10 | 2.20 |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

Table A.2.5b. Tests for Differences between Users who Responded to both Versions 1 and 2: Mean Person-days by Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS

|  |  | Users V1 | Users V2 | T-test |
| :--- | :---: | :---: | :---: | :---: |
| User Group/Activity |  |  |  |  |
| (mean) | (mean) | Significance $^{1}$ |  |  |
| Recreational bottom fishing | 21.81 | 30.69 | 0.1883 |  |
| Recreational fishing - trolling or drfting in mid or top water | 14.07 | 19.39 | 0.3311 |  |
| Recreational spear fishing with power heads | 0.06 | 0.00 | 0.3212 |  |
| Recreational spear fishing without power heads | 0.26 | 0.07 | 0.3782 |  |
| SCUBA diving (taking things) | 0.25 | 0.19 | 0.8383 |  |
| SCUBA diving (don't take things) | 0.61 | 0.45 | 0.7385 |  |
| Whale watching or other wildlife viewing activities | 5.31 | 2.79 | 0.3489 |  |
|  |  |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

Table A.2.6a. Tests for Differences between Users Version 1 and Versions 2: Mean Person-days by Activity in Coastal and Ocean Areas in GRNMS

|  | Users V1 | Users Pooled | T-test <br> (mean) |
| :--- | :---: | :---: | :---: |
| (mean) | Significance ${ }^{1}$ |  |  |
| User Group/Activity |  |  |  |
| Recreational bottom fishing | $\mathbf{6 . 6 4}$ | $\mathbf{1 3 . 4 5}$ | $\mathbf{0 . 0 2 7 5}$ |
| Recreational fishing - trolling or drfting in mid or top water | 7.19 | 10.38 | 0.2092 |
| Recreational spear fishing with power heads | 0.11 | 0.00 | 0.4461 |
| Recreational spear fishing without power heads | 0.00 | 0.12 | 0.0695 |
| SCUBA diving (taking things) | 0.00 | 0.14 | 0.1878 |
| SCUBA diving (don't take things) | 0.27 | 0.23 | 0.8800 |
| Whale watching or other wildlife viewing activities | 0.96 | 1.75 | 0.3005 |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

Table A.2.6b. Tests for Differences between Users who Responded to both Versions 1 and 2: Mean Person-days by Activity in Coastal and Ocean Areas in GRNMS

|  | Users V1 <br> (mean) | Users V2 <br> (mean) | T-test <br> Significance $^{1}$ <br> User Group/Activity |
| :--- | :---: | :---: | :---: |
|  | 8.38 | 15.59 | 0.1658 |
| Recreational bottom fishing | 8.71 | 9.75 | 0.7953 |
| Recreational fishing - trolling or drfting in mid or top water | 0.24 | 0.00 | 0.3211 |
| Recreational spear fishing with power heads | 0.00 | 0.06 | 0.3290 |
| Recreational spear fishing without power heads | 0.00 | 0.19 | 0.3212 |
| SCUBA diving (taking things) | 0.59 | 0.25 | 0.4275 |
| SCUBA diving (don't take things) | 0.70 | 2.24 | 0.1356 |
| Whale watching or other wildlife viewing activities |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

## Sources of Information Used

Comparisons of All respondents to each Survey Version. Out of the 22 sources of information for which tests were conducted, there were five statistically significant differences. Version 2 respondents had higher rates of use of information from the "Atlantic States Marine Fisheries Commission", the "Atlantic Fishery Management Council", "Georgia Sea Grant", the "International Game and Fish Association" and the "Southern Kingfish Association" (Table A.2.7a). Thus, there appears to be some support for non-response bias for sources of information used. Pooling the data across samples may provide better estimates (Chapter 3).

Comparisons of Respondents to both Survey Versions. Out of the 22 sources of information for which tests were conducted, there were only two statistically significant differences in responses to version 1 and 2 survey versions for the same 33 respondents. In the version 2 survey, these 33
respondents increased their use of "Georgia Sea Grant" and the "International Game and Fish Association" (Table A.2.7b). It is possible these respondents learned of these sources of information from the version 1 survey. So part of the explanation of the differences in responses to version 1 and 2 survey is not non-response bias, but a result of learning.

Table A.2.7a. Tests for Differences between Users Version 1 and Versions 2: Sources of Information Used

|  | Users V1 | Users V2 | Chi-Square | JT Test |
| :---: | :---: | :---: | :---: | :---: |
| Source of Information | (Percent) | (Percent) | Significance ${ }^{1}$ | Significance ${ }^{2}$ |
| Grays Reef National Marine Sanctuary Sanctuary Advisory Council | 17.11 | 23.26 | 0.4144 | 0.2082/0.4163 |
| Grays Reef National Marine Sanctuary Staff | 14.47 | 23.26 | 0.2273 | 0.1147/0.2293 |
| Grays Reef National Marine Sanctuary Web site | 59.21 | 51.16 | 0.3952 | 0.1986/0.3972 |
| NOAA's National Marine Fisheries Service | 50.00 | 46.51 | 0.7146 | 0.3579/0.7157 |
| Atlantic States Marine Fisheries Commission | 6.58 | 18.60 | 0.0434 | 0.0221/0.0442 |
| Atlantic Fishery Management Council | 6.58 | 18.60 | 0.0434 | 0.0221/0.0442 |
| Georgia Department of Natural Resources | 71.05 | 67.44 | 0.6804 | 0.3408/0.6817 |
| Georgia Sea Grant | 1.32 | 11.63 | 0.0135 | 0.0070/0.0139 |
| Georgia's Coastal Conservation Association (CCA) | 34.21 | 25.58 | 0.3286 | 0.1653/0.3306 |
| Recreational Fishing Alliance (RFA) | 31.58 | 34.88 | 0.7122 | 0.3567/0.7133 |
| American Sportfishing Association (ASA) | 17.11 | 25.58 | 0.2683 | 0.1352/0.2703 |
| National Coalition for Marine Conservation (NCMC) | 1.32 | 9.30 | 0.0370 | 0.0189/0.0378 |
| International Game and Fish Association (IGFA) | 13.16 | 32.56 | 0.0113 | 0.0058/0.0116 |
| Southern Kingfish Association (SKA) | 44.74 | 46.51 | 0.8518 | 0.4262/0.8524 |
| Fishing Magazines/Newsletters | 50.00 | 55.81 | 0.5419 | 0.2718/0.5436 |
| SCUBA diving magazines/Newsletters | 11.84 | 23.26 | 0.1025 | 0.0520/0.1039 |
| Newspapers | 42.11 | 53.49 | 0.2315 | 0.1167/0.2335 |
| Radio | 26.32 | 27.91 | 0.8508 | 0.4257/0.8514 |
| Television | 36.84 | 46.51 | 0.3016 | 0.1518/0.3037 |
| Internet | 61.84 | 60.47 | 0.8822 | 0.4413/0.8827 |
| Social Media (Twitter, You tube, Facebook, etc.) | 8.11 | 16.28 | 0.1751 | 0.0885/0.1770 |
| Word of mouth | 59.21 | 62.79 | 0.7011 | 0.3512/0.7023 |
| 1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher. |  |  |  |  |
| 2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes |  |  |  |  |
| (here users version 1 and versions 2). It tests the null hypothesis that the distributions of the response variable |  |  |  |  |
| does differ among classes. The number for signficance on the left side is the one-tailed test, while the |  |  |  |  |
| second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically |  |  |  |  |
| significant with 95 percent confidence or higher. |  |  |  |  |

Table A.2.7b. Tests for Differences between Users who Responded to both Versions 1 and 2: Sources of Information Used

|  | Users V1 | Users V2 | Chi-Square | JT Test |
| :---: | :---: | :---: | :---: | :---: |
| Source of Information | (Percent) | (Percent) | Significance ${ }^{1}$ | Significance ${ }^{2}$ |
| Grays Reef National Marine Sanctuary Sanctuary Advisory Council | 30.30 | 21.88 | 0.4395 | 0.2215/0.4431 |
| Grays Reef National Marine Sanctuary Staff | 21.21 | 21.88 | 0.9482 | 0.4743/0.9486 |
| Grays Reef National Marine Sanctuary Web site | 63.64 | 46.88 | 0.1741 | 0.0887/0.1775 |
| NOAA's National Marine Fisheries Service | 48.48 | 46.88 | 0.8966 | 0.4487/0.8974 |
| Atlantic States Marine Fisheries Commission | 9.09 | 21.88 | 0.1532 | 0.1026/0.1850 |
| Atlantic Fishery Management Council | 9.09 | 21.88 | 0.1532 | 0.1026/0.1851 |
| Georgia Department of Natural Resources | 75.76 | 65.63 | 0.3692 | 0.1865/0.3729 |
| Georgia Sea Grant | 0.00 | 12.50 | 0.0360 | 0.0187/0.0375 |
| Georgia's Coastal Conservation Association (CCA) | 42.42 | 28.13 | 0.2281 | 0.1158/0.2317 |
| Recreational Fishing Alliance (RFA) | 42.42 | 34.38 | 0.5049 | 0.2541/0.5081 |
| American Sportfishing Association (ASA) | 15.15 | 21.88 | 0.4849 | 0.2441/0.4883 |
| National Coalition for Marine Conservation (NCMC) | 3.03 | 9.38 | 0.2873 | 0.2418/0.2910 |
| International Game and Fish Association (IGFA) | 9.09 | 28.13 | 0.0480 | 0.0249/0.0497 |
| Southern Kingfish Association (SKA) | 54.55 | 43.75 | 0.3841 | 0.1939/0.3878 |
| Fishing Magazines/Newsletters | 54.55 | 53.18 | 0.9086 | 0.4546/0.9093 |
| SCUBA diving magazines/Newsletters | 12.12 | 15.63 | 0.6826 | 0.3425/0.6850 |
| Newspapers | 48.48 | 53.13 | 0.7083 | 0.3552/0.7105 |
| Radio | 27.27 | 31.25 | 0.7245 | 0.3633/0.7265 |
| Television | 45.45 | 43.75 | 0.8901 | 0.4455/0.8909 |
| Internet | 54.55 | 53.13 | 0.9086 | 0.4546/0.9093 |
| Social Media (Twitter, You tube, Facebook, etc.) | 9.09 | 15.63 | 0.4227 | 0.2132/0.4263 |
| Word of mouth | 63.64 | 62.50 | 0.9244 | 0.4625/0.9250 |
| 1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher. |  |  |  |  |
| 2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes |  |  |  |  |
| (here version 1 versus versions 2 responses). It tests the null hypothesis that the distributions of the response variable |  |  |  |  |
| does differ among classes. The number for signficance on the left side is the one-tailed test, while the |  |  |  |  |
| second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically |  |  |  |  |
| significant with 95 percent confidence or higher. |  |  |  |  |

## Level of Trust of Information Sources Used

Tests for differences in the level of trust of sources of information used are constrained by the number of respondents that used the source of information. The tests were conducted for only those information sources for which both samples had at least 25 respondents that used the source of information. This restricted the tests to nine of the 22 sources of information. Tests for the distribution of scores and the mean scores were conducted. Level of trust was measured using a five-point Likert scale where $1=$ "no trust at all", 2="very little trust", $3=$ "neutral", $4=$ "trust very much" and $5=$ "completely trust". The Chi-square and JT tests were used for tests
on the differences in distributions, while the T-test was used for testing differences in mean scores.

Comparisons of All respondents to each Survey Version. Of the nine sources of information for which level of trust was estimated, there were three statistically significant differences in both the distributions and mean scores. Version 1 respondents had higher levels of trusts for the "GRNMS web site", "NOAA’s National Marine Fisheries Service", and "Newspapers" than version 2 respondents (Table A.2.8a). So there does appear to be some potential for nonresponse bias for level of trust of information sources which suggests pooling the data across versions might5 provide better estimates (Chapter 3).

Comparisons of Respondents to both Survey Versions. None of the sources of information used had sample sizes 25 or above, so no tests could be performed for these 33 respondents.

Table A.2.8a Tests for Differences between Users Version 1 and Versions 2: Trust Level of Information Sources Used Most

| Selelcted Source/User Group ${ }^{1}$ | No <br> Trust <br> At All | Very <br> Little <br> Trust | Neutral | Trust <br> Very <br> Much | Completely <br> Trust | Mean | Chi-Square <br> Significance ${ }^{2}$ | JT Test <br> Significance ${ }^{3}$ | T-test <br> Significance ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GRNMS Web site |  |  |  |  |  |  | 0.0976 | 0.0063/0.0127 | 0.0081 |
| Users Version 1 | 0.00 | 6.98 | 18.60 | 46.51 | 27.91 | 3.95 |  |  |  |
| Users Versions 2 | 4./6 | 19.03 | 23.81 | 4\%.62 | 4.16 | 3.29 |  |  |  |
| NOAA's National Marine Fisheries Service |  |  |  |  |  |  | 0.0542 | 0.0268/0.0536 | 0.0218 |
| Users Version 1 | 0.00 | 8.82 | 26.47 | 35.29 | 29.41 | 3.85 |  |  |  |
| Users Versions 2 | 21.05 | 5.26 | 26.32 | 36.84 | 10.53 | 3.11 |  |  |  |
| Georgia Department of Natural Resources |  |  |  |  |  |  | 0.9289 | 0.2879/0.5759 | 0.5895 |
| Users Version 1 | 4.17 | 6.25 | 20.83 | 39.58 | 29.17 | 3.83 |  |  |  |
| Users Versions 2 | 3.85 | 11.54 | 19.23 | 42.31 | 23.08 | 3.69 |  |  |  |
| Southern Kingfish Association |  |  |  |  |  |  | 0.3191 | 0.2380/0.4760 | 0.4274 |
| Users Version 1 | 0.00 | 6.45 | 22.58 | 35.48 | 35.48 | 4.00 |  |  |  |
| Users Versions 2 | 0.00 | 5.00 | 5.00 | 55.00 | 35.00 | 4.20 |  |  |  |
| Fishing Magazines/Newsletters |  |  |  |  |  |  | 0.1451 | 0.2702/0.5404 | 0.4181 |
| Users Version 1 | 0.00 | 2.94 | 35.29 | 44.12 | 17.65 | 3.76 |  |  |  |
| Users Versions 2 | 0.00 | 4.35 | 30.43 | 65.22 | 0.00 | 3.61 |  |  |  |
| Newspapers |  |  |  |  |  |  | 0.1627 | 0.0167/0.0335 | 0.0432 |
| Users Version 1 | 0.00 | 3.57 | 35.71 | 46.43 | 14.29 | 3.71 |  |  |  |
| Users Versions 2 | 0.00 | 4.76 | 66.67 | 23.81 | 4.76 | 3.29 |  |  |  |
| Television |  |  |  |  |  |  | 0.4053 | 0.0477/0.0954 | 0.1045 |
| Users Version 1 | 0.00 | 3.70 | 40.74 | 44.44 | 11.11 | 3.63 |  |  |  |
| Users Versions 2 | 0.00 | 10.53 | 57.89 | 26.32 | 5.26 | 3.26 |  |  |  |
| Internet |  |  |  |  |  |  | 0.2778 | 0.1322/0.2644 | 0.3409 |
| Users Version 1 | 0.00 | 9.09 | 47.73 | 36.36 | 6.82 | 3.41 |  |  |  |
| Users Versions 2 | 0.00 | 4.00 | 72.00 | 20.00 | 4.00 | 3.24 |  |  |  |
| Word of mouth |  |  |  |  |  |  | 0.6096 | 0.3321/0.6642 | 0.8434 |
| Users Version 1 | 2.38 | 14.29 | 42.86 | 26.19 | 7.14 | 3.43 |  |  |  |
| Users Versions 2 | 0.00 | 8.00 | 48.00 | 32.00 | 12.00 | 3.48 |  |  |  |

1. Selected Sources are those with at least 25 observations per user group to support statistical tests between user groups.
2. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
3. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes. It tests the null hypothesis that the distributions among the classes are different. Yhe test on the left side is a one-sided test, while the test on the right is a two-dised test.
4. T-test for differences in means. A value of $(0.05)$ or less $(<)$ is significant at the 95 percent confidence level or higher.

## How Users Prefer to Receive Information

Comparisons of All respondents to each Survey Version. There were no statistically significant differences between the respondents to versions 1 and 2 (Table A.2.9a). So these responses seem to be robust to survey response rates.

Comparisons of Respondents to both Survey Versions. Again, there were no statistically significant differences by the 33 respondents to both survey versions for these survey items (Table A.2.9b).

Table A.2.9a. Tests for Differences between Users Version 1 and Versions 2: How they Prefer to Receive Informat about GRNMS

| Source of Information | Uses V1 <br> (Percent Yes) | UsersV2 <br> (Percent Yes) | Chi-square <br> Significance $^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| GRNMS Web site | 53.95 | 47.73 | 0.5111 | $0.2565 / 0.5129$ |
| E-mail from GRNMS Staff | 27.63 | 36.36 | 0.3182 | $0.1601 / 0.3202$ |
| E-mail List Serve | 49.33 | 45.45 | 0.6826 | $0.3419 / 0.6839$ |
| Newsletter via U.S. Postal Service | 50.00 | 47.73 | 0.8103 | $0.4056 / 0.8111$ |
| Telephone Call from GRNMS Staff | 6.67 | 13.64 | 0.2051 | $0.1035 / 0.2070$ |

1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and versions 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

Table A.2.9b. Tests for Differences between Users who Responded to both Versions 1 and 2: How they Prefer to Rec। Information about GRNMS

| Source of Information | Uses V1 <br> (Percent Yes) | UsersV2 <br> (Percent Yes) | Chi-square <br> Significance $^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| GRNMS Web site | 42.42 | 39.39 | 0.8023 | $0.4019 / 0.8038$ |
| E-mail from GRNMS Staff | 33.33 | 36.36 | 0.7962 | $0.3988 / 0.7977$ |
| E-mail List Serve | 48.48 | 45.45 | 0.8052 | $0.4033 / 0.8066$ |
| Newsletter via U.S. Postal Service | 51.52 | 51.52 | 1.000 | $0.50 / 1.00$ |
| Telephone Call from GRNMS Staff | 9.09 | 15.15 | 0.4507 | $0.2271 / 0.4541$ |

1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here version 1 versus versions 2 responses). It tests the null hypothesis that the distributions of the response variat does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than $(<) 0.05$ is statisitically significant with 95 percent confidence or higher.

## Familiarity with GRNMS Regulations

Comparisons of All respondents to each Survey Version. There wasn't a statistically significant difference between the respondents to versions 1 and 2 (Table A.2.10a). So the response to this survey item seem to be robust to survey response rates.

Comparisons of Respondents to both Survey Versions. Again, there wasn't a statistically significant difference by the 33 respondents to both survey versions for this survey item (Table A.2.10b).

Table A.2.10a. Tests for Differences between Users Version 1 and Versions 2: Familiarity with GRNMS Regula

| Rank of Familiarity | Users V1 <br> (Percent) | Users V2 <br> (Percent) | Chi-square <br> Significance $^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| Very Familiar | 16.00 | 36.36 | 0.0311 | $0.0045 / 0.0090$ |
| Somewhat Familiar | 77.33 | 61.36 |  |  |
| Not at All Familiar | 6.67 | 2.27 |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users verwsion 1 and versions 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while th second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

Table A.2.10b. Tests for Differences between Users who Responded to both Versions 1 and 2: Familiarity wi GRNMS Regulations

| Rank of Familiarity | Users V1 <br> (Percent) | Users V2 <br> (Percent) | Chi-square <br> Significance $^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| Very Familiar | 31.25 | 30.30 | 0.6111 | $0.3981 / 0.7962$ |
| Somewhat Familiar | 68.75 | 66.67 |  |  |
| Not at All Familiar | 0.00 | 3.03 |  |  |
|  |  |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here version 1 versus versions 2 responses). It tests the null hypothesis that the distributions of the respon variable does differ among classes. The number for signficance on the left side is the one-tailed test, while second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Perceptions of the Conditions of Resources in GRNMS

Tests were conducted for differences in responses to perceptions of resource conditions for 11 items included in the surveys. Differences in distributions were tested using Chi-square and JT tests, while differences in mean scores were tested using a T-test. Perceptions of conditions were measured using a five-point Likert scale where $1=$ "getting a lot better", $2=$ "getting somewhat better", $3=$ 'same", $4=$ "getting somewhat worse" and $5=$ "getting a lot worse". So a higher mean score means perceptions were that things were getting worse. A "Don't Know" response was also allowed for here and a high percent of respondents gave the "Don't Know" response. The "Don't Know" responses were retained for testing differences in the distributions of answers, but were dropped for testing differences in mean scores.

Comparisons of All respondents to each Survey Version. There were no statistically significant difference between the respondents to versions 1 and 2 (Table A.2.11a). So the response to these survey items seems to be robust to survey response rates.

Comparisons of Respondents to both Survey Versions. For the 33 respondents that answered both version of the survey, they significantly changed their responses to only one of the 11 items and that was for "Sea-based pollution (discharge from boats)" (Table A.2.10b). The overall distributions were not significantly different, but a higher percent moved from "Don't Know" in their version 1 responses to providing scores. Version 2 means scores were significantly lower than version 1 mean scores indicating that perceptions were that things were getting better ( a lower mean score means things were getting better).

Table 2.11a. Perceptions of Conditions of Resources in GRNMS: Users Version 1 and Versions 2

| Resource | Getting <br> a Lot <br> Better | Getting Somewhat Better | Same | Getting <br> Somewhat <br> Worse | Getting <br> a Lot <br> Worse | Don't Know | Mean | Chi-Square <br> Significance ${ }^{1}$ | JT Test Significance ${ }^{2}$ | T-test <br> Significance ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Live bottom habitat |  |  |  |  |  |  |  | 0.1612 | J.0668/0.133 | 0.1055 |
| Users Version 1 | 10.81 | 24.32 | 25.68 | 1.35 | 0.00 | 37.84 | 3.69 |  |  |  |
| Users Versions 2 | 18.18 | 25.00 | 27.27 | 6.82 | 2.27 | 20.45 | 3.11 |  |  |  |
| Other bottom habitat |  |  |  |  |  |  |  | 0.0736 | J.0381/0.0761 | 0.0619 |
| Users Version 1 | 8.00 | 20.00 | 33.33 | 1.33 | 0.00 | 37.33 | 3.77 |  |  |  |
| Users Versions 2 | 15.91 | 25.00 | 29.55 | 9.09 | 0.00 | 20.45 | 3.14 |  |  |  |
| Fish populations (bottom fish) |  |  |  |  |  |  |  | 0.7029 | J.1663/0.332 | 0.2579 |
| Users Version 1 | 18.92 | 22.97 | 24.32 | 8.11 | 0.00 | 25.68 | 3.24 |  |  |  |
| Users Versions 2 | 18.18 | 31.82 | 27.27 | 6.82 | 0.00 | 15.91 | 2.86 |  |  |  |
| Fish populations (pelagic) |  |  |  |  |  |  |  |  |  |  |
| Users Version 1 | 14.67 | 18.67 | 34.67 | 8.00 | 2.67 | 21.33 | 3.29 | 0.4684 | 0.1408/0.281 | 0.1819 |
| Users Versions 2 species) | 18.18 | 22.73 | 31.82 | 15.91 | 2.27 | 9.90 | 2.89 | 0.814 | J.1859/0.3717 | 0.2829 |
| Users Version 1 | 14.67 | 20.00 | 37.33 | 5.33 | 0.00 | 22.67 | 3.24 |  |  |  |
| Users Versions 2 | 15.91 | 22.73 | 43.18 | 4.55 | 0.00 | 13.64 | 2.91 |  |  |  |
| Other Sea life (abundance) |  |  |  |  |  |  |  | 0.2463 | J.0517/0.103 | 0.0809 |
| Users Version 1 | 6.67 | 26.67 | 30.67 | 2.67 | 0.00 | 33.33 | 3.63 |  |  |  |
| Users Versions 2 | 15.91 | 25.00 | 36.36 | 2.27 | 2.27 | 18.18 | 3.05 |  |  |  |
| species) |  |  |  |  |  |  |  | 0.2963 | J.0782/0.156 | 0.0855 |
| Users Version 1 | 6.76 | 25.68 | 32.43 | 1.35 | 0.00 | 33.78 | 3.63 |  |  |  |
| Users Versions 2 | 13.64 | 22.73 | 43.18 | 2.27 | 0.00 | 18.18 | 3.07 |  |  |  |
| Water quality |  |  |  |  |  |  |  | 0.1647 | J.4447/0.889 | 0.8607 |
| Users Version 1 | 10.67 | 18.67 | 44.00 | 1.33 | 0.00 | 25.33 | 3.37 |  |  |  |
| Users Versions 2 | 13.64 | 13.64 | 40.91 | 11.36 | 0.00 | 20.45 | 3.32 |  |  |  |
| Invasive species (such as lionfish) |  |  |  |  |  |  |  | 0.2694 | J.2677/0.535< | 0.6834 |
| Users Version 1 | 1.33 | 4.00 | 21.33 | 16.00 | 9.33 | 48.00 | 4.72 |  |  |  |
| Users Versions 2 | 2.27 | 0.00 | 20.45 | 22.73 | 20.45 | 34.09 | 4.61 |  |  |  |
| Marine debris (plastics, other trash) |  |  |  |  |  |  |  | 0.7071 | J.3661/0.732 | 0.6674 |
| Users Version 1 | 9.33 | 16.00 | 33.33 | 14.67 | 1.33 | 25.33 | 3.59 |  |  |  |
| Users Versions 2 | 9.09 | 20.45 | 27.27 | 20.45 | 4.55 | 18.18 | 3.45 |  |  |  |
| boats) |  |  |  |  |  |  |  | 0.1732 | J.0453/0.090€ | 0.0531 |
| Users Version 1 | 10.67 | 13.33 | 30.67 | 6.67 | 2.67 | 36.00 | 3.85 |  |  |  |
| Users Versions 2 | 11.36 | 13.64 | 47.73 | 9.09 | 4.55 | 13.64 | 3.23 |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes. It tests the null hypothesis that the distributions among the classes are different. Yhe test on the left side is a one-sided test, while the test on the right is a two-dised test.
3. T-test for differences in means. A value of (0.05) or less $(<)$ is significant at the 95 percent confidence level or higher.

Table 2.11b. Perceptions of Conditions of Resources in GRNMS: Users who Responded to both Versions 1 and 2

| Resource | Getting <br> a Lot <br> Better | Getting Somewhat Better | Same | Getting Somewhat Worse | Getting <br> a Lot <br> Worse | Don't Know | Mean | Chi-Square <br> Significance | JT Test Significance ${ }^{2}$ | T-test <br> Significance ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Live bottom habitat |  |  |  |  |  |  |  | 0.3232 | J.4285/0.856¢ | 0.5770 |
| Users Version 1 Response | 19.35 | 29.03 | 16.13 | 0.00 | 0.00 | 17.19 | 3.39 |  |  |  |
| Users Version 2 Response | 15.15 | 30.30 | 24.24 | 9.09 | 0.00 | 21.21 | 3.12 |  |  |  |
| Other bottom habitat |  |  |  |  |  |  |  | 0.3297 | J.2364/0.472¢ | 0.3416 |
| Users Version 1 Response | 15.63 | 21.88 | 25.00 | 0.00 | 0.00 | 37.50 | 3.59 |  |  |  |
| Users Version 2 Response | 15.15 | 27.27 | 27.27 | 9.09 | 0.00 | 21.21 | 3.15 |  |  |  |
| Fish populations (bottom fish) |  |  |  |  |  |  |  | 0.7108 | J.2918/0.583€ | 0.8814 |
| Users Version 1 Response | 31.25 | 25.00 | 18.75 | 3.13 | 0.00 | 21.88 | 2.81 |  |  |  |
| Users Version 2 Response | 181.80 | 33.33 | 27.27 | 3.03 | 0.00 | 18.18 | 2.88 |  |  |  |
| Fish populations (pelagic) |  |  |  |  |  |  |  |  |  |  |
| Users Version 1 Response | 25.00 | 25.00 | 28.13 | 6.25 | 0.00 | 15.63 | 2.78 | 0.5515 | 0.2499/0.499 | 0.7991 |
| Users Version 2 Response species) | 18.18 | 21.21 | 33.33 | 18.18 | 0.00 | 9.09 | 2.88 | 0.4471 | J.0969/0.193¢ | 0.4253 |
| Users Version 1 Response | 25.00 | 31.25 | 28.13 | 0.00 | 0.00 | 15.63 | 2.65 |  |  |  |
| Users Version 2 Response | 15.15 | 21.21 | 45.45 | 3.03 | 0.00 | 15.15 | 2.97 |  |  |  |
| Other Sea life (abundance) |  |  |  |  |  |  |  | 0.7353 | J.4673/0.934 | 0.9928 |
| Users Version 1 Response | 9.38 | 34.38 | 34.38 | 0.00 | 0.00 | 21.88 | 3.12 |  |  |  |
| Users Version 2 Response | 15.15 | 24.24 | 36.36 | 3.03 | 0.00 | 21.21 | 3.12 |  |  |  |
| species) |  |  |  |  |  |  |  | 0.8214 | J.4289/0.857¢ | 0.9302 |
| Users Version 1 Response | 12.50 | 28.13 | 34.38 | 0.00 | 0.00 | 25.00 | 3.21 |  |  |  |
| Users Version 2 Response | 12.12 | 21.21 | 45.45 | 0.00 | 0.00 | 21.21 | 3.18 |  |  |  |
| Water quality |  |  |  |  |  |  |  | 0.3199 | J.1124/0.224¢ | 0.4188 |
| Users Version 1 Response | 18.75 | 18.75 | 40.63 | 0.00 | 0.00 | 21.88 | 3.09 |  |  |  |
| Users Version 2 Response | 9.09 | 12.12 | 48.48 | 9.09 | 0.00 | 21.21 | 3.42 |  |  |  |
| Invasive species (such as lionfish) |  |  |  |  |  |  |  | 0.3991 | J.2927/0.585 | 0.7408 |
| Users Version 1 Response | 3.13 | 3.13 | 21.88 | 18.75 | 9.38 | 43.75 | 4.59 |  |  |  |
| Users Version 2 Response | 0.00 | 0.00 | 24.24 | 30.30 | 18.18 | 27.27 | 4.48 |  |  |  |
| Marine debris (plastics, other trash) |  |  |  |  |  |  |  | 0.4403 | J.1709/0.3417 | 0.3829 |
| Users Version 1 Response | 15.63 | 18.75 | 37.50 | 12.50 | 0.00 | 15.63 | 3.09 |  |  |  |
| Users Version 2 Response boats) | 6.06 | 24.24 | 27.27 | 21.21 | 6.06 | 15.15 | 3.42 | 0.0262 | ).1852/0.370 | 0.2349 |
| Users Version 1 Response | 18.75 | 9.38 | 28.13 | 3.13 | 0.00 | 40.63 | 3.78 |  |  |  |
| Users Version 2 Response | 6.06 | 18.18 | 48.48 | 9.09 | 6.06 | 12.12 | 3.27 |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes. It tests the null hypothesis that the distributions among the classes are different. Yhe test on the left side is a one-sided test, while the test on the right is a two-dised test.
3. T-test for differences in means. A value of $(0.05)$ or less $(<)$ is significant at the 95 percent confidence level or higher.

## Factors that Influenced the Choice of Going to GRNMS to do Activities

Tests were conducted on the differences for 10 factors that influenced the choice of selecting GRNMS to do activities. Responses were coded as $1=$ "Yes", $2=$ "'Somewhat" and $3=$ "Not at All". The Chi-square and JT tests were used to test for differences in the distributions of the answers to these factors.

Comparisons of All respondents to each Survey Version. There were no statistically significant difference between the respondents to versions 1 and 2 (Table A.2.12a). So the response to these survey items seems to be robust to survey response rates.

Comparisons of Respondents to both Survey Versions. For the 33 respondents that answered both version of the survey, there were no statistically significant in their responses to these items (Table A.2.11b).

Table A.2.12a. Factors that influenced the Choice of Going to GRNMS to Do Activities: Users Version 1 and Versions 2

| Factor | Yes (percent) | Somewhat (percent) | Not <br> at All (percent) | Chi-Square <br> Significance ${ }^{1}$ | JT Test Significance ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Weather |  |  |  | 0.1979 | 0.2271/0.4541 |
| Users Version 1 | 75.00 | 18.06 | 6.94 |  |  |
| Users Version 2 | 66.67 | 30.95 | 2.38 |  |  |
| Fish species prefrence |  |  |  | 0.913 | 0.4135/0.8269 |
| Users Version 1 | 80.56 | 13.89 | 5.56 |  |  |
| Users Version 2 | 78.57 | 16.67 | 4.76 |  |  |
| Time of Day |  |  |  | 0.0413 | 0.0073/0.0147 |
| Users Version 1 | 37.31 | 28.36 | 34.33 |  |  |
| Users Version 2 | 57.89 | 28.95 | 13.16 |  |  |
| Seasonal patterns |  |  |  | 0.2193 | 0.3252/0.6505 |
| Users Version 1 | 67.14 | 25.71 | 7.14 |  |  |
| Users Version 2 | 69.23 | 30.77 | 0.00 |  |  |
| Word of mouth/radio talk |  |  |  | 0.5225 | 0.3384/0.6768 |
| Users Version 1 | 36.36 | 33.33 | 30.30 |  |  |
| Users Version 2 | 35.14 | 43.24 | 21.62 |  |  |
| Boat Captain's choice |  |  |  | 0.013 | 0.0218/0.0436 |
| Users Version 1 | 27.69 | 26.15 | 46.15 |  |  |
| Users Version 2 | 55.88 | 8.82 | 35.29 |  |  |
| Sea Conditions |  |  |  | 0.5652 | 0.2825/0.5650 |
| Users Version 1 | 74.65 | 18.31 | 7.04 |  |  |
| Users Version 2 | 78.57 | 19.05 | 2.38 |  |  |
| Distance to GRNMS |  |  |  | 0.9913 | 0.4663/0.9327 |
| Users Version 1 | 60.56 | 25.35 | 14.08 |  |  |
| Users Version 2 | 60.00 | 25.00 | 15.00 |  |  |
| Better fishing |  |  |  | 0.7188 | 0.2781/0.5562 |
| Users Version 1 | 52.78 | 41.67 | 5.56 |  |  |
| Users Version 2 | 57.50 | 40.00 | 2.50 |  |  |
| Better diving for things to see |  |  |  | 0.7614 | 0.2535/0.5070 |
| Users Version 1 | 14.29 | 12.24 | 73.47 |  |  |
| Users Version 2 | 11.54 | 7.69 | 80.77 |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is tt one-tailed test, while the second number for significance is a two-tailed test. A value of less than $(<) 0.05$ is statisitically significant with 95 percent confidence or higher.

Table A.2.12b. Factors that influenced the Choice of Going to GRNMS to Do Activities: Users who Responded to both Versions 1 and 2

| Factor | Yes (percent) | Somewhat (percent) | Not <br> at All (percent) | Chi-Square <br> Significance ${ }^{1}$ | JT Test Significance ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Weather |  |  |  | 0.1998 | 0.2252/0.4504 |
| Users Version 1 Response | 67.74 | 22.58 | 9.68 |  |  |
| Users Version 2 Response | 54.84 | 41.94 | 3.23 |  |  |
| Fish species prefrence |  |  |  | 0.2794 | 0.1417/.2834 |
| Users Version 1 Response | 90.32 | 9.68 | 0.00 |  |  |
| Users Version 2 Response | 80.65 | 19.35 | 0.00 |  |  |
| Time of Day |  |  |  | 0.2146 | 0.0413/0.0826 |
| Users Version 1 Response | 34.48 | 34.48 | 31.03 |  |  |
| Users Version 2 Response | 55.56 | 29.63 | 14.81 |  |  |
| Seasonal patterns |  |  |  | 0.6234 | 0.4539/0.9079 |
| Users Version 1 Response | 70.97 | 25.81 | 3.23 |  |  |
| Users Version 2 Response | 71.43 | 28.57 | 0.00 |  |  |
| Word of mouth/radio talk |  |  |  | 0.7347 | 0.2300/0.4599 |
| Users Version 1 Response | 28.57 | 42.86 | 28.57 |  |  |
| Users Version 2 Response | 38.46 | 38.46 | 23.08 |  |  |
| Boat Captain's choice |  |  |  | 0.1077 | 0.2073/0.4146 |
| Users Version 1 Response | 35.71 | 32.14 | 32.14 |  |  |
| Users Version 2 Response | 56.52 | 8.70 | 34.78 |  |  |
| Sea Conditions |  |  |  | 0.4828 | 0.1162/0.2324 |
| Users Version 1 Response | 60.00 | 33.33 | 6.67 |  |  |
| Users Version 2 Response | 74.19 | 22.58 | 3.23 |  |  |
| Distance to GRNMS |  |  |  | 0.6777 | 0.3183/0.6366 |
| Users Version 1 Response | 61.29 | 22.58 | 16.13 |  |  |
| Users Version 2 Response | 68.97 | 13.79 | 17.24 |  |  |
| Better fishing |  |  |  | 0.7727 | 0.3873/0.7745 |
| Users Version 1 Response | 65.63 | 34.38 | 0.00 |  |  |
| Users Version 2 Response | 62.07 | 37.93 | 0.00 |  |  |
| Better diving for things to see |  |  |  | 0.9388 | 0.4091/0.8181 |
| Users Version 1 Response | 15.79 | 10.53 | 73.68 |  |  |
| Users Version 2 Response | 11.76 | 11.76 | 76.47 |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here version 1 versus version 2 responses). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is tt one-tailed test, while the second number for significance is a two-tailed test. A value of less than (<) 0.05 is statisitically significant with 95 percent confidence or higher.

## Chapter 3: Users Version 1 Compared to Pooled Version 1 \& 2 Samples

In this chapter, the responses to the version 1 survey of users are compared with the responses of the pooled data across versions 1 and 2. This will inform as to what are the best results to use for users. The pooled results are based on larger sample sizes and for certain measures such as levels of trust of sources of information used and person-days of activity are likely to be more sensitive to sample sizes than other measurements in the surveys. So it is expected that the pooled results will provide better estimates than version 1 survey results for the questions that were asked it both versions of the survey.

## Socioeconomic/Demographic Profiles

There were no statistically significant differences between the results for any socioeconomic/demographic factor in the version 1 survey and the pooled results across survey versions (Table A.3.1 and Table A.3.2). So the surveys seem to be robust for estimates on socioeconomic/demographic profile information.

Table A.3.1. Tests for Differences between Users Version 1 and Pooled Users Versions 1 \& 2: Demographic Profi

| Demographic Factor | Users V1 (percent) | Users Pooled (percent) | Chi-square <br> Sigificance ${ }^{1}$ | JT Test Significance ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Age |  |  | 0.9539 | 0.2774/0.5548 |
| 18-24 | 1.33 | 1.16 |  |  |
| 25-34 | 2.67 | 3.49 |  |  |
| 35-49 | 29.33 | 25.58 |  |  |
| 50-64 | 52.00 | 51.16 |  |  |
| 65 and over | 14.67 | 18.60 |  |  |
| Sex |  |  | 1.00 | 1.00/1.00 |
| Male | 100.00 | 100.00 |  |  |
| Female | 0.00 | 0.00 |  |  |
| Race |  |  | 1.00 | 1.00/1.00 |
| White | 100.00 | 100.00 |  |  |
| Black or African American | 0.00 | 0.00 |  |  |
| Asian | 0.00 | 0.00 |  |  |
| Native Hawaiian or Pacitic Islander | 0.00 | 0.00 |  |  |
| Educational Attainment |  |  | 0.9166 | 0.2378/0.4756 |
| 8th grade of less | 3.95 | 2.33 |  |  |
| 9th to 11th grade | 1.32 | 3.49 |  |  |
| Hıgh School Grad or Equivalent | 23.00 | 23.26 |  |  |
| Some College | 31.58 | 24.42 |  |  |
| Associates degree | 2.63 | 4.65 |  |  |
| Bachelors degree | 21.05 | 23.26 |  |  |
| Masters degree | 6.58 | 8.14 |  |  |
| Protessional degree | 3.95 | 6.98 |  |  |
| Doctors degree | 3.95 | 3.49 |  |  |
| Household Income (Before taxes) |  |  | 0.989 | 0.3971/0.7942 |
| Less than \$5,000 | 0.00 | 0.00 |  |  |
| \$5,000-\$9,999 | 0.00 | 1.22 |  |  |
| \$10,000-\$14,999 | 0.00 | 0.00 |  |  |
| \$15,000-\$19,999 | 1.39 | 1.22 |  |  |
| \$20,000-\$24,999 | 0.00 | 1.22 |  |  |
| \$25,000-\$29,999 | 1.39 | 0.00 |  |  |
| \$30,000-\$34,999 | 1.39 | 1.22 |  |  |
| \$35,000-\$39,999 | 2.78 | 2.44 |  |  |
| \$40,000-\$44,999 | 1.39 | 2.44 |  |  |
| \$45,000-\$49,999 | 4.17 | 2.44 |  |  |
| \$50,000-\$59,999 | 4.17 | 4.88 |  |  |
| \$60,000-\$74,999 | 12.50 | 13.41 |  |  |
| \$75,000-\$99,999 | 19.44 | 19.51 |  |  |
| \$100,000-\$149,999 | 23.61 | 24.39 |  |  |
| \$150,000 or more | 27.78 | 25.61 |  |  |
| Employment Status (\% yes) |  |  |  |  |
| unemployed | 0.00 | 0.00 | 1.00 | 1.00/1.00 |
| employed full-time | 75.00 | 70.11 | 0.4865 | 0.2439/0.4878 |
| employed part-time | 7.89 | 5.75 | 0.5856 | 0.2934/0.5867 |
| retired | 17.11 | 19.54 | 0.689 | 0.3450/0.6899 |
| student | 1.32 | 1.15 | 0.9233 | 0.4618/0.9236 |
| homemaker | 0.00 | 1.15 | 0.3485 | 0.1750/0.3500 |

Table A.3.1. Tests for Differences between Users Version 1 and Pooled Versions 1 \& 2: Demographic Profiles (continut

| Demographic Factor | Users V1 <br> (percent) | Users Pooled <br> (percent) | Chi-square <br> Sigificance ${ }^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| Household Type |  |  | 0.8793 | $0.4571 / 0.9142$ |
| Single adult with no children under 18 | 15.79 | 10.47 |  |  |
| Single adult with children under 18 | 1.32 | 1.16 |  |  |
| Two adults with no children under 18 | 43.42 | 52.33 |  |  |
| Two adults with children under 18 | 25 | 22.09 |  | $0.4503 / 0.9006$ |
| More than two adults with no children |  |  |  |  |
| under 18 | 9.21 | 8.14 |  | $0.4254 / 0.8507$ |
| More than two adults with children under | 5.26 | 5.81 |  | $0.2424 / 0.4848$ |
|  |  |  |  | $0.0634 / 0.1267$ |
| Boat Ownership (\% Yes) | 97.37 | 97.67 | 0.9503 | $0.4741 / 0.9482$ |
|  |  |  | 0.4834 | 0.1256 |
| Membership in Organizations (\% Yes) | 42.68 | 44.32 | 0.948 |  |
| Fishing | 2.60 | 1.14 | 7.95 |  |
| Diving | 15.58 | 11.69 | 11.36 |  |
| Environmental |  |  |  |  |
| Chamber of Commerce |  |  |  |  |

1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and versions $1 \& 2$ pooled). It tests the null hypothesis that the distributions of the response vari does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

Table A.3.2. Tests for Differences between Users Version 1 and Versions $1 \& 2$ Pooled: Demographic Means

| Demographic Factor | Users V1 <br> (mean) | Users Pooled <br> (mean) | T-test <br> Significance $^{1}$ |
| :--- | :---: | :---: | :---: |
| Age | 52.55 | 53.72 | 0.4941 |
| Household Size | 2.54 | 2.56 | 0.9138 |
| Number in Household 18 or over | 2.04 | 2.03 | 0.9703 |
| Number in Household less than 18 | 0.51 | 0.51 | 0.9964 |
| Boat Size (length in feet) | 24.57 | 24.48 | 0.9070 |
| Numver of People aboard boat | 3.09 | 3.09 | 0.9836 |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

## Activity Participation in Coastal \& Ocean Areas in and around Georgia Outside GRNMS

There were no statistically significant differences between the results for any recreation activity (Table A.3.3). So the survey results seem to be robust for estimates of activity participation in Georgia coastal and ocean waters outside GRNMS.

Table A.3.3. Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS

|  | Users V1 <br> (percent) | Users Pooled <br> (percent) | Chi-square <br> Significance ${ }^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| Activity | 92.11 | 93.10 | 0.8077 | $0.4041 / 0.8082$ |
| Recreational bottom fishing |  |  |  |  |
| Recreational fishing - trolling or drfting in | 90.79 | 93.10 | 0.5864 | $0.2938 / 0.5876$ |
| mid or top water | 7.89 | 8.05 | 0.9716 | $0.4859 / 0.9717$ |
| Recreational spear fishing with power |  |  |  |  |
| Recreational spear fishing without power | 13.16 | 13.79 | 0.9057 | $0.4530 / 0.9060$ |
| heads | 10.53 | 9.20 | 0.7757 | $0.3882 / 0.7764$ |
| SCUBA diving (taking things) | 14.47 | 13.79 | 0.9009 | $0.4506 / 0.9012$ |
| SCUBA diving (don't take things) |  |  |  |  |
| Whale watching or other wildlife viewing | 38.16 | 36.78 | 0.8563 | $0.4283 / 0.8567$ |
| activities | 6.58 | 5.75 | 0.8253 | $0.4129 / 0.8258$ |
| Sailing | 76.32 | 80.46 | 0.5204 | $0.2608 / 0.5217$ |
| Beach Activities | 9.21 | 11.49 | 0.6342 | $0.3176 / 0.6352$ |
| Surfing | 5.26 | 8.05 | 0.4799 | $0.2406 / 0.4812$ |
| Wind Surfing/Kite boarding | 21.05 | 18.39 | 0.6695 | $0.3352 / 0.6705$ |
| Personal Watercraft Use | 32.89 | 32.18 | 0.923 | $0.4616 / 0.9232$ |
| Shorebird Watching |  |  |  |  |
| Aggregate Activities | 96.10 | 95.45 | 0.8364 | $0.4185 / 0.8369$ |
| Any Fishing | 12.99 | 13.64 | 0.9026 | $0.4514 / 0.9029$ |
| Any Spear Fishing | 16.88 | 17.05 | 0.9779 | $0.4890 / 0.9780$ |
| Any SCUBA Diving | 96.10 | 95.45 | 0.8364 | $0.4185 / 0.8369$ |
| Any Consumptive | 44.16 | 44.32 | 0.9833 | $0.4917 / 0.9833$ |
| Any Nonconsumptive | 53.25 | 51.14 | 0.7866 | $0.3936 / 0.7872$ |
| Only Consumptive | 1.30 | 0.00 | 0.2836 | $0.1425 / 0.2850$ |
| Only Nonconsumptive |  |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and versions $1 \& 2$ pooled). It tests the null hypothesis that the distributions of the respon variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Activity Participation in coastal \& Ocean Areas in GRNMS

There were no statistically significant differences between the results for any recreation activity (Table A.3.4). So the survey results seem to be robust for estimates of activity participation in GRNMS.

Table A.3.4. Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Activity Participation in Coastal and Ocean Areas in GRNMS

|  | Users V1 <br> (percent) | Users Pooled <br> (percent) | Chi-square <br> Significance ${ }^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| Activity | 81.58 | 78.16 | 0.588 | $0.2946 / 0.5891$ |
| Recreational bottom fishing | 89.47 | 86.21 | 0.526 | $0.2636 / 0.5272$ |
| water | 2.63 | 1.15 | 0.4825 | $0.2419 / 0.4838$ |
| Recreational spear fishing with power heads | 3.95 | 4.60 | 0.8381 | $0.4193 / 0.8386$ |
| Recreational spear fishing without power heads | 1.32 | 2.30 | 0.6413 | $0.3212 / 0.6424$ |
| SCUBA diving (taking things) | 9.21 | 6.90 | 0.5864 | $0.2938 / 0.5876$ |
| SCUBA diving (don't take things) | 21.05 | 25.29 | 0.5236 | $0.2624 / 0.5248$ |
| Whale watching or other wildlife viewing activities | 2.63 | 3.45 | 0.7629 | $0.3818 / 0.7636$ |
| Sailing |  |  |  |  |
|  |  |  |  |  |
| Aggregate Activities | 94.81 | 93.18 | 0.6628 | $0.3319 / 0.6638$ |
| Any Fishing | 5.19 | 5.68 | 0.8907 | $0.4455 / 0.8910$ |
| Any Spear Fishing | 9.09 | 7.95 | 0.7938 | $0.3972 / 0.7944$ |
| Any SCUBA Diving | 42.86 | 40.17 | 0.6731 | $0.3368 / 0.6735$ |
| Any Viewing | 94.81 | 93.18 | 0.6628 | $0.3319 / 0.6638$ |
| Any Consumptive | 27.27 | 29.55 | 0.7469 | $0.3738 / 0.7477$ |
| Any Nonconsumptive | 68.83 | 64.77 | 0.5811 | $0.2911 / 0.5823$ |
| Only Consumptive | 1.30 | 1.14 | 0.9243 | $0.4622 / 0.9245$ |
| Only Nonconsumptive |  |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and versions $1 \& 2$ pooled). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Average or Mean Person-days by Activity in the Coastal \& Ocean Areas in and around Georgia Outside GRNMS

There were no statistically significant differences between version 1 estimates and the estimates obtained by pooling the data across the two versions of the survey (Table A.3.5). So the survey results seem to be robust for estimates of person-days of activity outside GRNMS.

Table A.3.5. Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Mean Person-days by Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS

| User Group/Activity | Users V1 <br> (mean) | Users Pooled <br> (mean) | T-test <br> Significance |
| :--- | :---: | :---: | :---: |
| Recreational bottom fishing | 21.81 | 25.52 | 0.4501 |
| Recreational fishing - trolling or drfting in mid or top water | 13.86 | 17.93 | 0.1602 |
| Recreational spear fishing with power heads | 0.28 | 0.27 | 0.9634 |
| Recreational spear fishing without power heads | 0.42 | 0.39 | 0.8765 |
| SCUBA diving (taking things) | 0.13 | 0.09 | 0.7283 |
| SCUBA diving (don't take things) | 0.38 | 0.37 | 0.9502 |
| Whale watching or other wildlife viewing activities | 5.10 | 3.58 | 0.3586 |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

## Average or Mean person-days by Activity in the Coastal \& Ocean Areas in GRNMS

There were no statistically significant differences between version 1 estimates and the estimates obtained by pooling the data across the two versions of the survey (Table A.3.6). So the survey results seem to be robust for estimates of person-days of activity in GRNMS.

Table A.3.5. Tests for Differences between Users Version 1 and Versions $1 \& 2$ Pooled: Mean Person-days b Activity in Coastal and Ocean Areas in GRNMS

| User Group/Activity | Users V1 <br> (mean) | Users Pooled <br> (mean) | T-test <br> Significance ${ }^{1}$ |
| :--- | :---: | :---: | :---: |
| Recreational bottom fishing | 6.64 | 9.51 | 0.2111 |
| Recreational fishing - trolling or drfting in mid or top water | 8.29 | 7.19 | 0.5696 |
| Recreational spear fishing with power heads | 0.11 | 0.00 | 0.2856 |
| Recreational spear fishing without power heads | 0.00 | 0.06 | 0.1984 |
| SCUBA diving (taking things) | 0.00 | 0.07 | 0.3520 |
| SCUBA diving (don't take things) | 0.27 | 0.13 | 0.4292 |
| Whale watching or other wildlife viewing activities | 0.96 | 1.45 | 0.4438 |
|  |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

## Sources of Information Used

There were no statistically significant differences between version 1 estimates and the estimates obtained by pooling the data across the two versions of the survey (Table A.3.7). So the survey results seem robust for estimates of sources of information used.

Table A.3.7. Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Sources of Information Used

|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Source of Information | Users V1 <br> (Percent) | Users Pooled <br> (Percent) | Chi-Square <br> Significance ${ }^{1}$ | JT Test <br> Significance $^{2}$ |
| Grays Reef National Marine Sanctuary Sanctuary |  |  |  |  |
| Advisory Council | 17.11 | 15.12 | 0.7307 | $0.3658 / 0.7315$ |
| Grays Reef National Marine Sanctuary Staff | 14.47 | 16.28 | 0.7509 | $0.3758 / 0.7517$ |
| Grays Reef National Marine Sanctuary Web site | 59.21 | 53.49 | 0.4638 | $0.2326 / 0.4652$ |
| NOAA's National Marine Fisheries Service | 50.00 | 48.84 | 0.8826 | $0.4415 / 0.8829$ |
| Atlantic States Marine Fisheries Commission | 6.58 | 11.63 | 0.2686 | $0.1350 / 0.2700$ |
| Atlantic Fishery Management Council | 6.58 | 11.63 | 0.2686 | $0.1350 / 0.2700$ |
| Georgia Department of Natural Resources | 71.05 | 67.44 | 0.6195 | $0.3103 / 0.6206$ |
| Georgia Sea Grant | 1.32 | 6.98 | 0.0770 | $0.0390 / 0.0779$ |
| Georgia's Coastal Conservation Association | 34.21 | 26.74 | 0.3018 | $0.1517 / 0.3033$ |
| Recreational Fishing Alliance (RFA) | 31.58 | 29.07 | 0.7286 | $0.3647 / 0.7294$ |
| American Sportfishing Association (ASA) | 17.11 | 22.09 | 0.4262 | $0.2138 / 0.4276$ |
| National Coalition for Marine Conservation |  |  |  |  |
| (NCMC) | 1.32 | 4.65 | 0.2206 | $0.1110 / 0.2220$ |
| International Game and Fish Association (IGFA) | 13.16 | 24.42 | 0.0690 | $0.0349 / 0.0699$ |
| Southern Kingfish Association (SKA) | 44.74 | 41.86 | 0.7123 | $0.3566 / 0.7131$ |
| Fishing Magazines/Newsletters | 50.00 | 51.16 | 0.8826 | $0.4415 / 0.8829$ |
| SCUBA diving magazines/Newsletters | 11.84 | 17.44 | 0.3167 | $0.1591 / 0.3182$ |
| Newspapers | 42.11 | 45.35 | 0.6780 | $0.3395 / 0.6789$ |
| Radio | 26.32 | 26.74 | 0.9509 | $0.4755 / 0.9510$ |
| Television | 36.84 | 38.37 | 0.8410 | $0.4208 / 0.8415$ |
| Internet | 61.84 | 63.95 | 0.7812 | $0.3909 / 0.7819$ |
| Social Media (Twitter, You tube, Facebook, etc.) | 8.11 | 11.90 | 0.4299 | $0.2157 / 0.4314$ |
| Word of mouth | 59.21 | 59.30 | 0.9905 | $0.4953 / 0.9906$ |
|  |  |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and versions $1 \& 2$ pooled). It tests the null hypothesis that the distributions of the response var: does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Level of Trust of Sources of Information Used

Tests for differences in the level of trust of sources of information used are constrained by the number of respondents that used the source of information. The tests were conducted for only those information sources for which both samples had at least 25 respondents that used the source of information. This restricted the tests to nine of the 22 sources of information. Tests for the distribution of scores and the mean scores were conducted. Level of trust was measured using a five-point Likert scale where $1=$ "no trust at all", 2="very little trust", $3=$ "neutral", 4="trust very much" and 5="completely trust". The Chi-square and JT tests were used for tests on the differences in distributions, while the T-test was used for testing differences in mean scores.

There were no statistically significant differences between version 1 estimates and the estimates obtained by pooling the data across the two versions of the survey (Table A.3.8). So the survey results seem robust for estimates on the level of trust of information sources used.

Table A.3.8 Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Trust Level of Information Sources Used Most

| Selelcted Source/User Group ${ }^{1}$ | No <br> Trust <br> At All | Very <br> Little <br> Trust | Neutral | Trust <br> Very <br> Much | Completely <br> Trust | Mean | Chi-Square <br> Significance ${ }^{2}$ | JT Test Significance ${ }^{3}$ | T-test <br> Significance ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GRNMS Web site |  |  |  |  |  |  | 0.3281 | 0.0359/0.0717 | 0.0550 |
| Users Version 1 | 0.00 | 6.98 | 18.60 | 46.51 | 27.91 | 3.95 |  |  |  |
| Users Versions 1 \& 2 Pooled | 2.33 | 16.28 | 18.60 | 48.84 | 13.95 | 3.56 |  |  |  |
| NOAA's National Marine Fisheries Service |  |  |  |  |  |  | 0.2857 | 0.2154/0.4308 | 0.2667 |
| Users Version 1 | 0.00 | 8.82 | 26.47 | 35.29 | 29.41 | 3.85 |  |  |  |
| Users Versions 1 \& 2 Pooled | 10.26 | 7.69 | 17.95 | 43.59 | 20.51 | 3.56 |  |  |  |
| Georgia Department of Natural Resources |  |  |  |  |  |  | 0.9688 | 0.3374/0.6748 | 0.6817 |
| Users Version 1 | 4.17 | 6.25 | 20.83 | 39.58 | 29.17 | 3.83 |  |  |  |
| Users Versions 1 \& 2 Pooled | 3.92 | 9.80 | 19.61 | 41.18 | 25.49 | 3.74 |  |  |  |
| Southern Kingfish Association |  |  |  |  |  |  | 0.2154 | 0.3070/0.6139 | 0.4724 |
| Users Version 1 | 0.00 | 6.45 | 22.58 | 35.48 | 35.48 | 4.00 |  |  |  |
| Users Versions 1 \& 2 Pooled | 0.00 | 2.94 | 8.82 | 58.82 | 29.41 | 4.15 |  |  |  |
| Fishing Magazines/Newsletters |  |  |  |  |  |  | 0.1517 | 0.1736/0.3472 | 0.2532 |
| Users Version 1 | 0.00 | 2.94 | 35.29 | 44.12 | 17.65 | 3.76 |  |  |  |
| Users Versions 1 \& 2 Pooled | 0.00 | 5.00 | 35.00 | 57.50 | 2.50 | 3.57 |  |  |  |
| Newspapers |  |  |  |  |  |  | 0.4417 | 0.0580/0.1160 | 0.1380 |
| Users Version 1 | 0.00 | 3.57 | 35.71 | 46.43 | 14.29 | 3.71 |  |  |  |
| Users Versions 1 \& 2 Pooled | 0.00 | 5.71 | 54.29 | 31.43 | 8.57 | 3.43 |  |  |  |
| Television |  |  |  |  |  |  | 0.6323 | 0.1502/0.3005 | 0.2621 |
| Users Version 1 | 0.00 | 3.70 | 40.74 | 44.44 | 11.11 | 3.63 |  |  |  |
| Users Versions 1 \& 2 Pooled | 0.00 | 6.45 | 48.39 | 41.94 | 3.23 | 3.42 |  |  |  |
| Internet |  |  |  |  |  |  | 0.6825 | 0.1916/0.3833 | 0.4086 |
| Users Version 1 | 0.00 | 9.09 | 47.73 | 36.36 | 6.82 | 3.41 |  |  |  |
| Users Versions 1 \& 2 Pooled | 0.00 | 7.69 | 59.62 | 28.85 | 3.85 | 3.29 |  |  |  |
| Word of mouth |  |  |  |  |  |  | 0.7573 | 0.2316/0.4633 | 0.5694 |
| Users Version 1 | 2.38 | 14.29 | 42.86 | 26.19 | 7.14 | 3.43 |  |  |  |
| Users Versions 1 \& 2 Pooled | 0.00 | 8.51 | 44.68 | 34.04 | 8.51 | 3.55 |  |  |  |

1. Selected Sources are those with at least 25 observations per user group to support statistical tests between user groups.
2. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher.
3. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes. It tests the null hypothesis that the distributions among the classes are different. Yhe test on the left side is a one-sided test, while the test on the right is a two-dised test.
4. T-test for differences in means. A value of $(0.05)$ or less $(<)$ is significant at the 95 percent confidence level or higher.

## How Users Prefer to Receive Information

There were no statistically significant differences between version1 estimates and the estimates obtained by pooling the data across the two versions of the survey (Table A.3.9). So the survey results seem robust for estimates on how users prefer to receive information.

Table A.3.9. Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: How they Prefer to Receive Information about GRNMS

| Source of Information | Uses V1 <br> (Percent Yes) | Users Pooled <br> (Percent Yes) | Chi-square <br> Significance $^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| GRNMS Web site | 53.95 | 55.17 | 0.8755 | $0.4379 / 0.8759$ |
| E-mail from GRNMS Staff | 27.63 | 29.89 | 0.7514 | $0.3761 / 0.7521$ |
| E-mail List Serve | 49.33 | 47.67 | 0.8336 | $0.4170 / 0.8341$ |
| Newsletter via U.S. Postal Service | 50.00 | 48.28 | 0.8261 | $0.4133 / 0.8267$ |
| Telephone Call from GRNMS Staff | 6.67 | 9.30 | 0.5403 | $0.2708 / 0.5416$ |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes
(here users version 1 and versions $1 \& 2$ pooled). It tests the null hypothesis that the distributions of the response var does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Users Familiarity with GRNMS Regulations

There wasn't a statistically significant difference between the version 1 estimate and the estimate obtained by pooling the data across the two versions of the survey (Table A.3.10). So the survey results seem robust for estimates on how familiar users are about GRNMS regulations.

Table A.3.9. Tests for Differences between Users Version 1 and Versions 1 \& 2 Pooled: Familiarity with GRNM Regulations

| Rank of Familiarity | Users V1 <br> (Percent) | Users Pooled <br> (Percent) | Chi-square <br> Significance $^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| Very Familiar | 16.00 | 20.69 | 0.7364 | $0.2730 / 0.5460$ |
| Somewhat Familiar | 77.33 | 72.41 |  |  |
| Not at All Familiar | 6.67 | 6.90 |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users verwsion 1 and versions $1 \& 2$ Pooled). It tests the null hypothesis that the distributions of the resp variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## User's Perceptions of Resource Conditions in GRNMS

Tests were conducted for differences in responses to perceptions of resource conditions for 11 items included in the surveys. Differences in distributions were tested using Chi-square and JT tests, while differences in mean scores were tested using a T-test. Perceptions of conditions were measured using a five-point Likert scale where $1=$ "getting a lot better", $2=$ "getting somewhat better", $3=$ 'same", $4=$ "getting somewhat worse" and $5=$ "getting a lot worse". So a higher mean score means perceptions were that things were getting worse. A "Don't Know" response was also allowed for here and a high percent of respondents gave the "Don't Know" response. The "Don’t Know" responses were retained for testing differences in the distributions of answers, but were dropped for testing differences in mean scores.

There were no statistically significant differences between version1 estimates and the estimates obtained by pooling the data across the two versions of the survey (Table A.3.11). So the survey results seem robust for estimates on user's perceptions of resource conditions in GRNMS.

Table 3.11. Perceptions of Conditions of Resources in GRNMS: Users Version 1 and Versions 1 \& 2 Pooled

| Resource | Getting <br> a Lot <br> Better | Getting <br> Somewhat <br> Better | Same | Getting Somewhat Worse | Getting <br> a Lot <br> Worse | Don't Know | Mean | Chi-Square <br> Significance | JT Test <br> ${ }^{1}$ Significance ${ }^{2}$ | T-test <br> Significance ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Live bottom habitat |  |  |  |  |  |  |  | 0.6597 | J.3259/0.651\& | 0.5328 |
| Users Version 1 | 10.81 | 24.32 | 25.68 | 1.35 | 0.00 | 37.84 | 3.69 |  |  |  |
| Users Versions 1 \& 2 Pooled | 11.49 | 22.99 | 29.89 | 4.60 | 1.15 | 29.89 | 3.51 |  |  |  |
| Other bottom habitat |  |  |  |  |  |  |  | 0.5288 | .2205/.4411 | 0.3616 |
| Users Version 1 | 8.00 | 20.00 | 33.33 | 1.33 | 0.00 | 37.33 | 3.77 |  |  |  |
| Users Versions 1 \& 2 Pooled | 9.20 | 21.84 | 34.48 | 5.75 | 0.00 | 28.74 | 3.52 |  |  |  |
| Fish populations (bottom fish) |  |  |  |  |  |  |  | 0.8607 | .4706/.9412 | 0.9036 |
| Users Version 1 | 18.92 | 22.97 | 24.32 | 8.11 | 0.00 | 25.68 | 3.24 |  |  |  |
| Users Versions 1 \& 2 Pooled | 13.95 | 26.74 | 27.91 | 9.30 | 0.00 | 22.09 | 3.21 |  |  |  |
| Fish populations (pelagic) |  |  |  |  |  |  |  |  |  |  |
| Users Version 1 | 14.67 | 18.67 | 34.67 | 8.00 | 2.67 | 21.33 | 3.29 | 0.925 | 0.4490/0.898 | 0.9456 |
| Users Versions 1 \& 2 Pooled species) | 12.64 | 18.39 | 35.63 | 12.64 | 3.45 | 17.24 | 3.28 | 0.8929 | J.3328/0.665 | 0.8544 |
| Users Version 1 | 14.67 | 20.00 | 37.33 | 5.33 | 0.00 | 22.67 | 3.24 |  |  |  |
| Users Versions 1 \& 2 Pooled | 11.49 | 17.24 | 43.68 | 6.90 | 0.00 | 20.69 | 3.29 |  |  |  |
| Other Sea life (abundance) |  |  |  |  |  |  |  | 0.8526 | ).3685/0.737 | 0.6982 |
| Users Version 1 | 6.67 | 26.67 | 30.67 | 2.67 | 0.00 | 33.33 | 3.63 |  |  |  |
| Users Versions 1 \& 2 Pooled species) | 10.34 | 22.99 | 32.18 | 3.45 | 1.15 | 29.89 | 3.52 | 0.9187 | J.3762/0.752؟ | 0.6286 |
| Users Version 1 | 6.76 | 25.68 | 32.43 | 1.35 | 0.00 | 33.78 | 3.63 |  |  |  |
| Users Versions 1 \& 2 Pooled | 8.14 | 23.26 | 37.21 | 2.33 | 0.00 | 29.07 | 3.50 |  |  |  |
| Water quality |  |  |  |  |  |  |  | 0.5327 | J.2959/0.591\& | 0.7724 |
| Users Version 1 | 10.67 | 18.67 | 44.00 | 1.33 | 0.00 | 25.33 | 3.37 |  |  |  |
| Users Versions 1 \& 2 Pooled | 9.20 | 16.09 | 43.68 | 6.90 | 0.00 | 24.14 | 3.45 |  |  |  |
| Invasive species (such as lionfish) |  |  |  |  |  |  |  | 0.8729 | J.4232/0.846 | 0.9729 |
| Users Version 1 | 1.33 | 4.00 | 21.33 | 16.00 | 9.33 | 48.00 | 4.72 |  |  |  |
| Users Versions 1 \& 2 Pooled | 1.15 | 2.30 | 20.69 | 18.39 | 14.94 | 42.53 | 4.71 |  |  |  |
| Marine debris (plastics, other trash) |  |  |  |  |  |  |  | 0.8919 | J.3136/0.627: | 0.6554 |
| Users Version 1 | 9.33 | 16.00 | 33.33 | 14.67 | 1.33 | 25.33 | 3.59 |  |  |  |
| Users Versions 1 \& 2 Pooled | 6.90 | 17.24 | 28.74 | 18.39 | 3.45 | 25.29 | 3.70 |  |  |  |
| boats) |  |  |  |  |  |  |  | 0.4828 | J.1756/0.3512 | 0.2796 |
| Users Version 1 | 10.67 | 13.33 | 30.67 | 6.67 | 2.67 | 36.00 | 3.85 |  |  |  |
| Users Versions 1 \& 2 Pooled | 8.05 | 14.94 | 40.23 | 9.20 | 4.60 | 22.99 | 3.56 |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes. It tests the null hypothesis that the distributions among the classes are different. Yhe test on the left side is a one-sided test, while the test on the right is a two-dised test.
3. T-test for differences in means. A value of (0.05) or less $(<)$ is significant at the 95 percent confidence level or higher.

## Factors that Influenced Users Choice of Going to GRNMS to do Activities

Tests were conducted on the differences for 10 factors that influenced the choice of selecting GRNMS to do activities. Responses were coded as $1=$ "Yes", $2=$ "'Somewhat" and $3=$ "Not at All". The Chi-square and JT tests were used to test for differences in the distributions of the answers to these factors.

There were no statistically significant differences between version1 estimates and the estimates obtained by pooling the data across the two versions of the survey (Table A.3.12). So the survey results seem robust for estimates on the factors that influenced user's choices of going to GRNMS to do their activities.

## Conclusions

No statistically significant differences were found for any survey item between version 1 of the survey of users and the pooled data across the two versions of the survey. So the estimates provide in Leeworthy (2012a) for users of GRNMS can be considered reliable estimates.

Table A.3.12. Factors that influenced the Choice of Going to GRNMS to Do Activities: Users Version 1 and Versions $1 \& 2$ Pooled

| Factor | Yes (percent) | Somewhat (percent) | Not <br> at All (percent) | Chi-Square <br> Significance ${ }^{1}$ | JT Test <br> Significance ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Weather |  |  |  | 0.5281 | 0.4682/0.9363 |
| Users Version 1 | 75.00 | 18.06 | 6.94 |  |  |
| Users Versions 1 \& 2 Pooled | 73.49 | 22.89 | 3.61 |  |  |
| Fish species prefrence |  |  |  | 0.7807 | 0.2416/0.4831 |
| Users Version 1 | 80.56 | 13.89 | 5.56 |  |  |
| Users Versions 1 \& 2 Pooled | 75.90 | 16.87 | 7.23 |  |  |
| Time of Day |  |  |  | 0.3377 | 0.0711/0.1421 |
| Users Version 1 | 37.31 | 28.36 | 34.33 |  |  |
| Users Versions 1 \& 2 Pooled | 48.68 | 26.32 | 25.00 |  |  |
| Seasonal patterns |  |  |  | 0.847 | 0.4889/0.9777 |
| Users Version 1 | 67.14 | 25.71 | 7.14 |  |  |
| Users Versions 1 \& 2 Pooled | 66.67 | 28.21 | 5.13 |  |  |
| Word of mouth/radio talk |  |  |  | 0.8907 | 0.3350/0.6700 |
| Users Version 1 | 36.36 | 33.33 | 30.30 |  |  |
| Users Versions 1 \& 2 Pooled | 38.67 | 34.67 | 26.67 |  |  |
| Boat Captain's choice |  |  |  | 0.2265 | 0.2812/0.5624 |
| Users Version 1 | 27.69 | 26.15 | 46.15 |  |  |
| Users Versions 1 \& 2 Pooled | 38.03 | 15.49 | 46.48 |  |  |
| Sea Conditions |  |  |  | 0.5462 | 0.1367/0.2734 |
| Users Version 1 | 74.65 | 18.31 | 7.04 |  |  |
| Users Versions 1 \& 2 Pooled | 81.93 | 13.25 | 4.82 |  |  |
| Distance to GRNMS |  |  |  | 0.9917 | 0.4830/0.9659 |
| Users Version 1 | 60.56 | 25.35 | 14.08 |  |  |
| Users Versions 1 \& 2 Pooled | 60.00 | 26.25 | 13.75 |  |  |
| Better fishing |  |  |  | 0.9388 | 0.3618/0.7236 |
| Users Version 1 | 52.78 | 41.67 | 5.56 |  |  |
| Users Versions 1 \& 2 Pooled | 50.00 | 43.75 | 6.25 |  |  |
| Better diving for things to see |  |  |  | 0.9258 | 0.3494/0.6988 |
| Users Version 1 | 14.29 | 12.24 | 73.47 |  |  |
| Users Versions 1 \& 2 Pooled | 12.50 | 10.71 | 76.79 |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 1 and version $1 \& 2$ Pooled). It tests the null hypothesis that the distributions the response variable does differ among classes. The number for signficance on the left side is tt one-tailed test, while the second number for significance is a two-tailed test. A value of less than $(<) 0.05$ is statisitically significant with 95 percent confidence or higher.

## Chapter 4: Comparisons of Users and Non-users for Version 2 Survey Responses

In this chapter, comparisons are made between the responses that users and non-users of GRNMS provided to version 2 survey questions. Users and Non-users all provided socioeconomic/demographic profile information. Differences found here may explain differences in responses to other survey questions. Other survey questions incorporated in version 2 surveys for users and non-users include; activity participation and use in coastal and ocean areas in and around Georgia outside GRNMS; concern about the health of coastal and ocean areas in and around Georgia both outside and inside GRNMS; ways users and non-users value coastal and ocean resources/marine environment; activities or actions users and non-users would do to ensure that coastal and ocean resources are used sustainably and available for future generations to enjoy; and support for various management strategies.

## Socioeconomic/Demographic Profiles

As explained in chapters 2 and 3, comparisons for distributions of responses were conducted using Chi-square and JT tests, while for continuous variables differences in means were tested using T-tests.

There were many statistically significant differences between users and non-users of GRNMS for socioeconomic/demographic factors. Users were on average older than non-users with higher concentration in the ages 50-64, while non-users were more concentrated in the less than 34 age group. For sex and race, $100 \%$ of users were white males, while non-users were close to the Georgia-wide population. Users had higher household incomes than non-users with users more concentrated in the income categories $\$ 50,000$ and higher, while non-users more concentrated in the less than $\$ 5,000$. This correlates with employment status as users had higher concentration in the full-time employment category, while zero users were unemployed versus more than 34\% of non-users. Household sizes were not significantly different, but the make-up or household type was. Non-users were more concentrated in households headed by single adults and in households without children. Users were much more likely to be boat owners and for those who were boat owners, users owned large boats. For membership in organizations, the only significant difference was that users were more likely to be a member of an organization related to fishing (Table A.4.1 and Table A.4.2).

Table A.4.1. Tests for Differences between Users and Non-users Version 2: Demographic Profiles

| Demographic Factor | Users V2 (percent) | Non-users V2 (percent) | Chi-square Sigificance ${ }^{1}$ | JT Test Significance ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Age |  |  | <0.0001 | <0.001/<0.0001 |
| 18-24 | 0.00 | 20.01 |  |  |
| 25-34 | 2.27 | 21.54 |  |  |
| 35-49 | 18.18 | 22.40 |  |  |
| bu-64 | by.uy | 1\%.92 |  |  |
| b ana over | <0.4 | <U.4 |  |  |
| Sex |  |  | <0.0001 | <0.001/<0.0001 |
| Male | 100.00 | 40.45 |  |  |
| Female | 0.00 | 59.55 |  |  |
| Race |  |  | <0.0001 | <0.001/<0.0001 |
| White | 100.00 | 54.86 |  |  |
| Black or African American | 0.00 | 43.22 |  |  |
| Asian | 0.00 | 0.00 |  |  |
| Native Hawaiian or Pacitic Islander | 0.00 | 1.93 |  |  |
| Educational Attainment |  |  | 0.089 | 0.1756/0.3512 |
| 8th grade of less | 2.33 | 1.51 |  |  |
| 9th to 11th grade | 4.65 | 4.18 |  |  |
| High School Grad or Equivalent | 23.26 | 25.15 |  |  |
| Some College | 27.91 | 14.62 |  |  |
| Associates degree | 6.98 | 0.4/ |  |  |
| Bachelors degree | 18.60 | 33.80 |  |  |
| Masters degree | 6.98 | 16.06 |  |  |
| Protessional degree | 6.98 | 3.00 |  |  |
| Doctors degree | 2.33 | 1.21 |  |  |
| Household Income (Before taxes) |  |  | <0.0001 | <0.001/<0.0001 |
| Less than \$5,000 | 0.00 | 34.11 |  |  |
| \$5,000-\$9,999 | 2.44 | 1.69 |  |  |
| \$10,000-\$14,999 | 0.00 | 5.13 |  |  |
| \$15,000-\$19,999 | 0.00 | 9.26 |  |  |
| \$20,000-\$24,999 | 2.44 | 0.87 |  |  |
| \$25,000-\$29,999 | 0.00 | 0.47 |  |  |
| \$30,000-\$34,999 | 0.00 | 5.49 |  |  |
| \$35,000 - \$39,999 | 0.00 | 2.68 |  |  |
| \$40,000-\$44,999 | 2.44 | 2.59 |  |  |
| \$45,000-\$49,999 | 2.44 | 0.76 |  |  |
| \$50,000 - \$59,999 | 4.88 | 1.21 |  |  |
| \$60,000-\$74,999 | 9.76 | 7.60 |  |  |
| \$75,000-\$99,999 | 24.39 | 12.50 |  |  |
| \$100,000-\$149,999 | 34.15 | 12.19 |  |  |
| \$150,000 or more | 17.07 | 3.46 |  |  |
| Employment Status (\% yes) |  |  |  |  |
| unemployed | 0.00 | 35.19 | <0.0001 | <0.001/<0.0001 |
| employed full-time | 68.18 | 41.74 | 0.0036 | 0.0018/0.0037 |
| employed part-time | 2.27 | 3.60 | 0.6781 | 0.3396/0.6791 |
| retired | 25.00 | 17.99 | 0.3361 | 0.1689/0.3378 |
| student | 0.00 | 0.00 | 1.0000 | 0.50/1.00 |
| homemaker | 2.27 | 3.01 | 0.8056 | 0.4031/0.8063 |

Table A.4.1. Tests for Differences between Users and Non-users Versions 2: Demographic Profiles (continued)

| Demographic Factor | Users V2 (percent) | Non-users V2 (percent) | Sigificance ${ }^{1}$ | JT Test Significance ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Household Type |  |  | 0.0024 | 0.0317/0.0634 |
| Single adult with no children under 18 | 2.33 | 12.65 |  |  |
| Single adult with children under 18 | 0.00 | 14.10 |  |  |
| Two adults with no children under 18 | 65.12 | 40.01 |  |  |
| Two adults with children under 18 | 13.95 | 24.54 |  |  |
| More than two adults with no children under 18 | 9.30 | 2.36 |  |  |
| More than two adults with children under | 9.30 | 6.34 |  |  |
| Boat Ownership (\% Yes) | 97.67 | 14.36 | <0.0001 | <0.0001/<0.0001 |
| Membership in Organizations (\% Yes) |  |  |  |  |
| Fishing | 54.55 | 3.79 | <0.0001 | <0.0001/<0.0001 |
| Diving | 2.27 | 4.10 | 0.5851 | 0.2932/0.5864 |
| Environmental | 6.82 | 11.37 | 0.4023 | 0.2020/0.4040 |
| Chamber of Commerce | 13.64 | 7.92 | 0.2872 | 0.1444/0.2889 |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 2 and non-users version 2). It tests the null hypothesis that the distributions of the response variab] does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

Table A.4.2. Tests for Differences between Users and Non-users Version 2: Demographic M

| Demographic Factor | Users V2 <br> (mean) | Non-users V2 <br> (mean) | T-test <br> Significance $^{1}$ |
| :--- | :---: | :---: | :---: |
| Age | 56.59 | 42.67 | $\mathbf{0 . 0 0 0 1}$ |
| Household Size | 2.56 | 2.82 | 0.379 |
| Number in Household 18 or over | 2.12 | 2.10 | 0.9284 |
| Number in Household less than 18 | 0.39 | 0.70 | 0.179 |
| Boat Size (length in feet) | 24.07 | 17.34 | $<\mathbf{0 . 0 0 0 1}$ |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

## Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS

There were several statistically significant differences here. Users were much more likely to participate in fishing and beach activities, and generally users were more likely to participate in consumptive related activities (Table A.4.3).

Table A.4.3. Tests for Differences between Users and Nonusers Version 2: Activity Participation in Coastal and Ocean Areas in and around Georgia Outside GRNMS

|  | Users V2 <br> (percent) | Non-users V2 <br> (percent) | Chi-square <br> Significance ${ }^{1}$ | JT Test <br> Significance ${ }^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| Activity | 90.91 | 21.72 | $<\mathbf{0 . 0 0 0 1}$ | $<\mathbf{0 . 0 0 0 1 / < \mathbf { 0 . 0 0 0 1 }}$ |
| Recreational bottom fishing |  |  |  |  |
| Recreational fishing - trolling or drfting in <br> mid or top water | 93.18 | 23.72 | $<\mathbf{0 . 0 0 0 1}$ | $<\mathbf{0 . 0 0 0 1 / < \mathbf { 0 . 0 0 0 1 }}$ |
| Recreational spear fishing with power <br> Recreational spear fishing without power | 6.82 | 1.76 | 0.1206 | $0.0610 / 0.1219$ |
| heads | 13.64 | 5.41 |  |  |
| SCUBA diving (taking things) | 6.82 | 0.76 | 0.0939 | $0.0476 / 0.0951$ |
| SCUBA diving (don't take things) | 15.91 | 10.11 | 0.0376 | $\mathbf{0 . 0 1 9 2 / 0 . 0 3 8 3}$ |
| Whale watching or other wildlife viewing |  |  |  | $0.1627 / 0.3255$ |
| activities | 38.64 | 23.72 | 0.0683 | $0.0346 / 0.0693$ |
| Sailing | 4.55 | 13.74 | 0.1039 | $0.0526 / 0.1051$ |
| Beach Activities | 81.82 | 52.34 | $\mathbf{0 . 0 0 0 8}$ | $\mathbf{0 . 0 0 0 4 / \mathbf { 0 . 0 0 0 9 }}$ |
| Surfing | 11.36 | 13.10 | 0.7729 | $0.3869 / 0.7737$ |
| Wind Surfing/Kite boarding | 11.36 | 7.77 | 0.4867 | $0.2441 / 0.4883$ |
| Personal Watercraft Use | 13.64 | 11.44 | 0.7109 | $0.3560 / 0.7119$ |
| Shorebird Watching | 34.09 | 28.69 | 0.5173 | $0.2594 / 0.5188$ |
| Aggregate Activities |  |  |  |  |
| Any Fishing | 93.18 | 27.49 | $<\mathbf{0 . 0 0 0 1}$ | $<\mathbf{0 . 0 0 0 1 / < \mathbf { 0 . 0 0 0 1 }}$ |
| Any Spear Fishing | 13.64 | 5.41 | 0.0939 | $0.0476 / 0.0951$ |
| Any SCUBA Diving | 18.18 | 10.87 | 0.2333 | $0.1175 / 0.2350$ |
| Any Consumptive | 93.18 | 27.49 | $<\mathbf{0 . 0 0 0 1}$ | $<\mathbf{0 . 0 0 0 1 / < \mathbf { 0 . 0 0 0 1 }}$ |
| Any Nonconsumptive | 45.45 | 56.44 | 0.2251 | $0.1134 / 0.2268$ |
| Only Consumptive | 47.73 | 0.88 | $<\mathbf{0 . 0 0 0 1}$ | $<\mathbf{0 . 0 0 0 1 / < \mathbf { 0 . 0 0 0 1 }}$ |
| Only Nonconsumptive | 0.00 | 29.84 | $<\mathbf{0 . 0 0 0 1}$ | $<\mathbf{0 . 0 0 0 1 / < \mathbf { 0 . 0 0 0 1 }}$ |
|  |  |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Average or Mean Number of Person-days of Activity in coastal and Ocean Areas in and around Georgia Outside GRNMS

Here the differences in mean number of person-days per year were tested. Only two statistically significant differences were found and they were for both fishing activities with users having much higher mean numbers of person-days of fishing activity (Table A.4.4).

Table A4.4. Tests for Differences between Users and Non-users Version 2: Mean Person-days by Activity in Coastal and Ocean Areas in and around Georgia Outside GRNMS

| User Group/Activity | Users V2 <br> (mean) | Non-users V2 <br> (mean) | T-test <br> Significance ${ }^{1}$ |
| :--- | :---: | :---: | :---: |
| Recreational bottom fishing | 29.14 | 2.77 | $<\mathbf{0 . 0 0 0 1}$ |
| Recreational fishing - trolling or drfting in mid or top water | 21.95 | 2.98 | $<\mathbf{0 . 0 0 0 1}$ |
| Recreational spear fishing with power heads | 0.09 | 0.22 | 0.7589 |
| Recreational spear fishing without power heads | 0.22 | 0.40 | 0.6798 |
| SCUBA diving (taking things) | 0.14 | 0.00 | 0.2216 |
| SCUBA diving (don't take things) | 0.52 | 0.89 | 0.8167 |
| Whale watching or other wildlife viewing activities | 2.20 | 2.26 | 0.9618 |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

## Concern about the Health of Coastal \& Ocean Areas in and around Georgia Outside GRNMS

There were 14 items included in the survey. Tests for differences in the in the level of concern about the health of coastal and ocean areas for the distribution of scores and the mean scores were conducted. Level of concern was measured using a five-point Likert scale where 1="no concern at all", $2=$ "not very concerned", $3=$ "neutral", $4=$ "somewhat concerned" and 5="extremely concerned". The Chi-square and JT tests were used for tests on the differences in distributions, while the T-test was used for testing differences in mean scores.

Using the Chi-square statistic, there were statically significant differences between users and non-users for all 14 items. However, using the more powerful JT test, two of the items there is not a statistically significant difference and that was concern for "Mining of minerals (including sand)" and "Habitat loss from coastal development" (Table A.4.5).

Using the t-test for differences in mean scores there were statistically significant differences for 12 or the 14 items. The two items where there wasn't a statistically significant difference were concern for "Coral reef health or other live bottom habitat" and "Mining of minerals (including sand) (Table A.4.5).

Table 4.5. Concern about the Health of Coastal \& Ocean Areas in and around Georgia Outside of GRNMS: Users vs Non-users Version 2 Surveys

| Issue | No Concerned at all | Not <br> Very Concerned | Neutral | Somewhat <br> Concerned | Extremely <br> Concerned | Mean | Chi-square <br> Sigificance ${ }^{1}$ | JT Test Significance ${ }^{2}$ | T-test Significance ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Ocean acidification |  |  |  |  |  |  | 0.0014 | 0.0032/0.0065 | 0.0429 |
| User | 9.52 | 14.29 | 33.33 | 33.33 | 9.52 | 3.19 |  |  |  |
| Non-user | 2.97 | 19.75 | 11.30 | 31.54 | 34.43 | 3.74 |  |  |  |
| 2. Climate change |  |  |  |  |  |  | <0.0001 | <0.0001/<0.0001 | <0.0001 |
| User | 23.81 | 16.67 | 26.19 | 30.95 | 2.38 | 2.71 |  |  |  |
| Non-user | 7.51 | 5.60 | 18.90 | 13.85 | 54.13 | 4.01 |  |  |  |
| 3. Sea level rise |  |  |  |  |  |  | <0.0001 | <0.0001/<0.0001 | <0.0001 |
| User | 23.81 | 19.05 | 26.19 | 28.57 | 2.38 | 2.67 |  |  |  |
| Non-user | 5.88 | 7.89 | 18.50 | 13.79 | 53.94 | 4.02 |  |  |  |
| 4. Over fishing (catching more than can be replaced) |  |  |  |  |  |  | 0.0046 | 0.0037/0.0075 | 0.0275 |
| User | 19.51 | 9.76 | 14.63 | 29.27 | 26.83 | 3.34 |  |  |  |
| Non-user | 3.61 | 14.86 | 5.68 | 28.67 | 47.19 | 4.01 |  |  |  |
| 5. Coral reef health or other live bottom |  |  |  |  |  |  | 0.0165 | 0.0179/0.0358 | 0.1273 |
| habitat |  |  |  |  |  |  |  |  |  |
| User | 4.76 | 7.14 | 14.29 | 38.10 | 35.71 | 3.93 |  |  |  |
| Non-user | 4.04 | 4.16 | 1.08 | 40.35 | 50.38 | 4.29 |  |  |  |
| 6. Marine animal's health |  |  |  |  |  |  | 0.0008 | <0.0001/<0.0001 | 0.0012 |
| User | 7.14 | 4.76 | 16.67 | 52.38 | 19.05 | 3.71 |  |  |  |
| Non-user | 1.77 | 2.27 | 4.40 | 36.68 | 54.88 | 4.41 |  |  |  |
| 7. Shipping (marine transportation) |  |  |  |  |  |  | 0.0023 | 0.0094/0.0188 | 0.0317 |
| User | 11.90 | 21.43 | 30.95 | 23.81 | 11.90 | 3.02 |  |  |  |
| Non-user | 2.20 | 5.17 | 42.79 | 40.24 | 9.59 | 3.50 |  |  |  |
| 8. Dredging/Offshore dredge disposal |  |  |  |  |  |  | 0.0205 | 0.0006/0.0012 | 0.011 |
| User | 7.14 | 19.05 | 19.05 | 35.71 | 19.05 | 3.40 |  |  |  |
| Non-user | 3.31 | 6.73 | 15.12 | 28.74 | 46.10 | 4.08 |  |  |  |
| 9. Beach renourishment |  |  |  |  |  |  | 0.0022 | <0.0001/<0.0001 | 0.0012 |
| User | 7.14 | 19.05 | 35.71 | 28.57 | 9.52 | 3.14 |  |  |  |
| Non-user | 1.89 | 5.47 | 20.49 | 46.79 | 25.35 | 3.88 |  |  |  |
| 10 Energy production (oil \& gas) |  |  |  |  |  |  | <0.0001 | $<0.0001 /<0.0001$ | <0.0001 |
| User | 23.81 | 21.43 | 21.43 | 16.67 | 16.67 | 2.81 |  |  |  |
| Non-user | 4.93 | 2.68 | 5.91 | 24.90 | 61.58 | 4.36 |  |  |  |
| 11. Alternative energy production (wind, |  |  |  |  |  |  |  |  |  |
| tidal, and wave) |  |  |  |  |  |  | <0.0001 | $<0.0001 /<0.0001$ | <0.0001 |
| User | 21.43 | 23.81 | 28.57 | 19.05 | 7.14 | 2.67 |  |  |  |
| Non-user | 5.57 | 4.31 | 22.71 | 20.38 | 47.03 | 3.99 |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes
(here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.
3. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

Table 4.5. Concern about the Health of Coastal \& Ocean Areas in and around Georgia Outside of GRNMS: Users vs Non-users (continued)

| Issue | No <br> Concerned <br> at all | Not <br> Very <br> Concerned | Neutral | Somewhat Concerned | Extremely Concerned | Mean | Chi-square <br> Sigificance ${ }^{1}$ | JT Test Significance ${ }^{2}$ | T-test <br> Significance ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12. Mining of minerals (including sand) |  |  |  |  |  |  | 0.0013 | 0.4361/0.8722 | 0.7037 |
| User | 11.90 | 21.43 | 16.67 | 28.57 | 21.43 | 3.26 |  |  |  |
| Non-user | 4.48 | 7.26 | 52.28 | 19.98 | 16.00 | 3.36 |  |  |  |
| 13. Habitat loss from coastal developme |  |  |  |  |  |  | 0.0072 | 0.0592/0.1183 | 0.0500 |
| User | 2.38 | 16.67 | 4.76 | 40.48 | 35.71 | 3.90 |  |  |  |
| Non-user | 0.69 | 1.09 | 7.71 | 48.49 | 42.01 | 4.30 |  |  |  |
| 14 Pollution (contaminants such as mercury, PCBs, sewage, pesticides) |  |  |  |  |  |  | 0.0247 | 0.0043/0.0087 | 0.0238 |
| User | 2.38 | 2.38 | 11.90 | 28.57 | 54.76 | 4.31 |  |  |  |
| Non-user | 0.69 | 1.08 | 1.08 | 22.36 | 74.79 | 4.69 |  |  |  |

1. A value less than (<) 0.05 is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

## Concern about the Health of Coastal \& Ocean Areas in GRNMS

There were 14 items included in the survey. Tests for differences in the in the level of concern about the health of coastal and ocean areas for the distribution of scores and the mean scores were conducted. Level of concern was measured using a five-point Likert scale where $1=$ "no concern at all", $2=$ "not very concerned", $3=$ "neutral", $4=$ "somewhat concerned" and $5=$ "extremely concerned". The Chi-square and JT tests were used for tests on the differences in distributions, while the T-test was used for testing differences in mean scores.

Using the Chi-square statistic, there were statically significant differences between users and non-users for 13 of the 14 items. Using the more powerful JT test, again 13 of the 14 items had statistically significant differences, but the 13 items were not the same. For the Chi-square test, the item not significantly different was concern for "Dredging Offshore dredge disposal", and for the JT test, the only item not significantly different was concern for "Mining of minerals (including sand)" (Table A.4.6).

Using the t-test for differences in mean scores there were statistically significant differences for 11 or the 14 items. The three items where there wasn't a statistically significant difference were concern for "Ocean Acidification", "Coral reef health or other live bottom", and "Mining of minerals (including sand) (Table A.4.6).

Table 4.6. Concern about the Health of Coastal \& Ocean Areas inside GRNMS: Users vs Non-users Version 2 Surveys

| Issue | No <br> Concerned <br> at all | Not <br> Very Concerned | Neutral | Somewhat Concerned | Extremely <br> Concerned | Mean | Chi-square <br> Sigificance ${ }^{1}$ | JT Test <br> Significance ${ }^{2}$ | T-test <br> Significance ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Ocean acidification |  |  |  |  |  |  | <0.0001 | 0.0032/0.0064 | 0.0572 |
| User | 11.90 | 9.52 | 30.95 | 33.33 | 14.29 | 3.29 |  |  |  |
| Non-user | 4.13 | 19.27 | 5.93 | 30.19 | 40.48 | 3.84 |  |  |  |
| 2. Climate change |  |  |  |  |  |  | <0.0001 | <0.0001/<0.0001 | <0.0001 |
| User | 24.39 | 14.63 | 26.83 | 26.83 | 7.32 | 2.78 |  |  |  |
| Non-user | 7.25 | 5.70 | 18.03 | 11.53 | 57.48 | 4.06 |  |  |  |
| 3. Sea level rise |  |  |  |  |  |  | <0.0001 | <0.0001/<0.0001 | <0.0001 |
| User | 26.19 | 19.05 | 28.57 | 21.43 | 4.76 | 2.59 |  |  |  |
| Non-user | 6.44 | 8.04 | 22.03 | 7.04 | 56.45 | 3.99 |  |  |  |
| 4. Over fishing (catching more than can |  |  |  |  |  |  |  |  |  |
| be replaced) |  |  |  |  |  |  | <0.0001 | <0.0001/<0.0001 | <0.0001 |
| User | 28.57 | 7.14 | 14.29 | 28.57 | 21.43 | 3.07 |  |  |  |
| Non-user | 1.77 | 3.64 | 6.85 | 39.78 | 47.96 | 4.29 |  |  |  |
| 5. Coral reef health or other live bottom |  |  |  |  |  |  |  |  |  |
| habitat |  |  |  |  |  |  | 0.0086 | 0.0157/0.0314 | 0.1873 |
| User | 4.76 | 7.14 | 11.90 | 42.86 | 33.33 | 3.93 |  |  |  |
| Non-user | 3.28 | 3.64 | 16.90 | 16.60 | 59.59 | 4.26 |  |  |  |
| 6. Marine animal's health |  |  |  |  |  |  | 0.0031 | 0.0003/0.0006 | 0.0128 |
| User | 4.76 | 7.14 | 26.19 | 42.86 | 19.05 | 3.64 |  |  |  |
| Non-user | 1.77 | 4.39 | 17.66 | 21.30 | 54.88 | 4.23 |  |  |  |
| 7. Shipping (marine transportation) |  |  |  |  |  |  | 0.0015 | 0.0020/0.0040 | 0.0145 |
| User | 7.14 | 21.43 | 38.10 | 19.05 | 14.29 | 3.12 |  |  |  |
| Non-user | 1.45 | 4.09 | 36.71 | 43.88 | 13.88 | 3.65 |  |  |  |
| 8. Dredging/Offshore dredge disposal |  |  |  |  |  |  | 0.0628 | 0.0045/0.0089 | 0.0289 |
| User | 4.65 | 18.60 | 16.28 | 32.56 | 27.91 | 3.60 |  |  |  |
| Non-user | 2.96 | 5.17 | 12.22 | 33.30 | 46.36 | 4.15 |  |  |  |
| 9. Beach renourishment |  |  |  |  |  |  | <0.0001 | $<0.0001 /<0.0001$ | 0.0002 |
| User | 9.30 | 18.60 | 34.88 | 23.26 | 13.95 | 3.14 |  |  |  |
| Non-user | 1.89 | 4.84 | 13.95 | 50.25 | 29.06 | 4.00 |  |  |  |
| 10 Energy production (oil \& gas) |  |  |  |  |  |  | <0.0001 | $<0.0001 /<0.0001$ | <0.0001 |
| User | 23.26 | 23.26 | 18.60 | 11.63 | 23.26 | 2.88 |  |  |  |
| Non-user | 4.18 | 0.76 | 6.35 | 25.56 | 63.15 | 4.43 |  |  |  |
| 11. Alternative energy production (wind, |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | <0.0001 | <0.0001/<0.0001 | <0.0001 |
| User | 20.93 | 25.58 | 30.23 | 11.63 | 11.63 | 2.67 |  |  |  |
| Non-user | 3.72 | 5.32 | 8.53 | 31.50 | 50.94 | 4.21 |  |  |  |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes
(here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.
3. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

Table 4.6. Concern about the Health of Coastal \& Ocean Areas inside GRNMS: Users vs Non-users (continued)

| Issue | No <br> Concerned <br> at all | Not <br> Very Concerned | Neutral | Somewhat Concerned | Extremely Concerned | Mean | Chi-square <br> Sigificance ${ }^{1}$ | JT Test <br> Significance ${ }^{2}$ | T-test <br> Significance ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12. Mining of minerals (including sand) |  |  |  |  |  |  | 0.0002 | 0.3113/0.6226 | 0.4465 |
| User | 13.95 | 18.60 | 16.28 | 23.26 | 27.91 | 3.33 |  |  |  |
| Non-user | 2.66 | 4.91 | 51.13 | 20.26 | 21.05 | 3.52 |  |  |  |
| 13. Habitat loss from coastal developme |  |  |  |  |  |  | 0.0039 | 0.0046/0.0091 | 0.0169 |
| User | 2.33 | 16.28 | 18.60 | 30.23 | 32.56 | 3.74 |  |  |  |
| Non-user | 0.69 | 1.08 | 20.26 | 25.90 | 52.07 | 4.28 |  |  |  |
| 14 Pollution (contaminants such as |  |  |  |  |  |  |  |  |  |
| User | 0.00 | 4.65 | 13.95 | 32.56 | 48.84 | 4.26 |  |  |  |
| Non-user | 0.69 | 1.08 | 3.35 | 14.17 | 80.71 | 4.73 |  |  |  |

1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.
3. A value less than ( $<0.05$ is statistically significant with 95 percent confidence or higher.

## Ways Users and Non-users Value Coastal \& Ocean Resources/Marine Environment

There were 10 goods or services that people get from coastal and ocean resources/marine environment that were evaluated in the survey. Measures of value used a five-point Likert scale where $1=$ "no value", $2=$ "low value", $3=$ "medium value", $4=$ "high value" and $5=$ "extremely high value". As with other measures, the Chi-square and JT tests were used for differences in distributions of responses, while the t-test was used for differences in mean scores.

There were statistically significant differences between users and non-users for all 10 goods and services included in the survey for all statistical tests. Non-users had higher value for all goods and services than users for all goods and services, except "Support for recreation activities" for which users had higher value (Table A.4.7). Not surprising since all users are engaged in some form of recreation activity.

Table 4.7. Ways Users versus Non-users of GRNMS Value Coastal \& Ocean Resources/Marine Environment Version 2 Surveys

| Good or Service | No <br> Value | Low <br> Value | Medium <br> Value | High <br> Value | Extremely |  | Chi-square <br> Sigificance ${ }^{1}$ | JT Test Significance ${ }^{2}$ | T-test Significance ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | High <br> Value | Mean |  |  |  |
| a. Support for recreation activities |  |  |  |  |  |  | 0.0253 | 0.0012/0.0024 | 0.0315 |
| User | 2.38 | 2.38 | 9.52 | 45.24 | 40.48 | 4.19 |  |  |  |
| Non-user | 2.99 | 1.92 | 33.27 | 41.66 | 20.16 | 3.74 |  |  |  |
| b. Seafood purchased at local stores and restaurants |  |  |  |  |  |  | <0.0001 | $<0.0001 /<0.0001$ | 0.0007 |
| User | 4.65 | 18.60 | 27.91 | 25.58 | 23.26 | 3.44 |  |  |  |
| Non-user | 3.75 | 1.08 | 8.33 | 40.28 | 46.56 | 4.25 |  |  |  |
| c. Seafood purchased at non local stores \& restaurants |  |  |  |  |  |  | 0.0001 | <0.0001/<0.0001 | 0.0003 |
| User | 26.19 | 26.19 | 35.71 | 7.14 | 4.76 | 2.38 |  |  |  |
| Non-user | 4.58 | 16.40 | 35.64 | 32.73 | 10.65 | 3.28 |  |  |  |
| d. Support for Scientific Research |  |  |  |  |  |  | 0.0027 | 0.0058/0.0115 | 0.0512 |
| User | 6.82 | 9.09 | 40.91 | 27.27 | 15.91 | 3.36 |  |  |  |
| Non-user | 1.45 | 15.93 | 17.05 | 25.92 | 39.65 | 3.86 |  |  |  |
| e. Support for education |  |  |  |  |  |  | 0.0002 | $<0.0001 /<0.0001$ | 0.0009 |
| User | 6.82 | 2.27 | 31.82 | 34.09 | 25.00 | 3.68 |  |  |  |
| Non-user | 1.45 | 2.92 | 12.30 | 17.90 | 65.43 | 4.43 |  |  |  |
| f. Supply of mineral resources through mining |  |  |  |  |  |  | <0.0001 | $<0.0001 /<0.0001$ | 0.0002 |
| User | 29.55 | 27.27 | 34.09 | 6.82 | 2.27 | 2.25 |  |  |  |
| Non-user | 2.50 | 29.71 | 26.63 | 32.81 | 8.34 | 3.14 |  |  |  |
| g. Supply of oil \& gas |  |  |  |  |  |  | 0.0134 | 0.0015/0.0030 | 0.0156 |
| User | 16.28 | 9.30 | 34.88 | 13.95 | 25.58 | 3.23 |  |  |  |
| Non-user | 5.87 | 9.44 | 16.27 | 20.62 | 47.79 | 3.95 |  |  |  |
| h. Supply of alternative energy (wind, wave, tidal) |  |  |  |  |  |  | <0.0001 | 0.0003/0.0006 | 0.0046 |
| User | 15.91 | 13.64 | 36.36 | 18.18 | 15.91 | 3.04 |  |  |  |
| Non-user | 2.53 | 18.72 | 12.64 | 22.56 | 43.54 | 3.86 |  |  |  |
| i. Supply of pharmaceutical products through mining |  |  |  |  |  |  |  |  |  |
| or harvest of resources |  |  |  |  |  |  | <0.0001 | <0.0001/0.0002 | 0.0012 |
| User | 20.45 | 27.27 | 25.00 | 18.18 | 9.09 | 2.68 |  |  |  |
| Non-user | 1.45 | 22.66 | 15.07 | 42.97 | 17.85 | 3.53 |  |  |  |
| j. Protection of resources even though I never intend |  |  |  |  |  |  |  |  |  |
| to visit or directly use them |  |  |  |  |  |  | <0.0001 | <0.0001/<0.0001 | 0.0017 |
| User | 11.36 | 11.36 | 34.09 | 25.00 | 18.18 | 3.27 |  |  |  |
| Non-user | 1.45 | 14.10 | 8.65 | 22.54 | 53.27 | 4.12 |  |  |  |

1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.
3. A value less than (<) 0.05 is statistically significant with 95 percent confidence or higher.

## Activities or Actions Users and Non-users would do to ensure that coastal and ocean resources are used sustainably and available for future generations to enjoy

There were nine activities or actions included in the survey. The extent of what users and nonusers would do was measured using a five-point Likert scale where $1=$ "would not do", $2=$ "would do very little", $3=$ "would do some", $4=$ "would do a lot", and 5="would do the maximum". As with other measures, the Chi-square and JT tests were conducted for testing differences in the distribution of responses, while the T-test was used for testing differences in mean scores.

For distributions of responses using the Chi-square and JT tests, statistically significant differences were found between users and non-users for six of the nine activities or actions. The three activities or actions where there was not a statistically significant difference was for "volunteer time", "donate to groups representing diving interests", and "avoid/boycott certain seafood products". The same differences were found for the same six activities or actions using tests for differences in mean scores (Table A.4.8).

Users were less willing than non-users to do activities or actions related to paying more for user fees, prices or taxes. Consistent with other findings on fishing participation, use, and value, users were more willing to donate to organizations representing fishing interests. Non-users were more willing to "recycle" and "use less energy".

Table 4.8. Activities or Actions Users versus Non-users of GRNMS Would Do to ensure that coastal and ocean resources are used sustainably and available for future generations to enjoy Version 2 Surveys


1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes
(here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.
3. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

## Support for various Coastal \& Ocean Resource Protection Strategies

The survey asked about support for several coastal and ocean resource protection management strategies that are being employed around the world or are being considered by managers. For five strategies the level of support was measured using a five-point Likert scale where $1=$ "no support at all", $2=$ "somewhat against", 3="neutral", 4="somewhat support", and 5="strongly support". For marine zoning, a simple yes/no response was provided.

Two marine zoning strategies were evaluated; support for marine reserves (no-take areas) and the more restrictive type of zone "research only areas" where only science and education activities are allowed. For these two zoning strategies, respondents were also asked to provide an estimate of what the maximum acceptable percent displacement of activity of different uses they would support.

As with other survey questions, the Chi-square and JT tests were used to test for differences in question response distributions, while differences in mean scores were tested using T-tests. For the percents of maximum acceptable impacts, differences in mean percents were tested using a T-test.

Non-users were more supportive of all the strategies evaluated in the survey across all statistical tests (Table A.4.9 and Table A.4.10).

Maximum acceptable impacts were evaluated for 10 consumptive activities that would be displaced by marine reserves (no-take areas). Non-users were more willing to accept greater impacts on all groups, but statistically significant differences existed for eight of the 10 activities. The two activities that were not statistically significant were "recreational bottom fishing" and "recreational spear fishing with power heads" (Table A.4.11).

Maximum acceptable impacts were also evaluated for 10 consumptive activities that would be displaced by research only areas. There was only one statistically significant difference here with non-users willing to accept greater impacts on "SCUBA diving (taking things) (Table A.4.12).

Table 4.9. Comparisons of Users and Non-users of GRNMS on Support for Various Coastal \& Ocean Resource Protection Strategies Version 2 :


1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among classes. The number for signficance on the left side is the one-tailed test, while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.
3. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

Table 4.10. Comparisons of Users and Non-users of GRNMS on Support for Marine Zoning: Version 2 Surveys

| User Group | Percent <br> Yes | Chi-square <br> Sigificance $^{1}$ | JT Test <br> Significance $^{2}$ |
| :--- | :---: | :---: | :---: |
| Users | 39.53 | $<\mathbf{0 . 0 0 0 1}$ | $\mathbf{< 0 . 0 0 0 1} /<\mathbf{0 . 0 0 0 1}$ |
| Non-users | 75.78 |  |  |
|  |  |  |  |

1. A value less than ( $<$ ) 0.05 is statistically significant with 95 percent confidence or higher.
2. The Jonckheere-Terpstra (JT) test is a nonparametric test for ordered differences among classes (here users version 2 and Non-users version 2). It tests the null hypothesis that the distributions of the response variable does differ among class The number for signficance on the left side is the one-tailed tes while the second number for significance is a two-tailed test. A value of less than ( $<$ ) 0.05 is statisitically significant with 95 percent confidence or higher.

Table 4.11. Maximum Acceptable Percent Impact on Various Activities from Marine Reserves in G Users versus Non-users Version 2 Surveys

| Activity | User <br> Group | Mean | T-test Significance ${ }^{1}$ |
| :---: | :---: | :---: | :---: |
| Recreational bottom fishing | User <br> Non-user | $\begin{aligned} & 25.71 \\ & 37.04 \end{aligned}$ | 0.1202 |
| Recreational fishing - trolling or drfting in mid or top $u$ | User <br> Non-user | $\begin{aligned} & 22.50 \\ & 54.99 \end{aligned}$ | <0.0001 |
| Recreational spear fishing without power heads | User <br> Non-user | $\begin{aligned} & 14.40 \\ & 49.87 \end{aligned}$ | <0.0001 |
| Recreational spear fishing with power heads | User <br> Non-user | $\begin{aligned} & 40.71 \\ & 50.05 \end{aligned}$ | 0.4073 |
| Commercial bottom fishing | User <br> Non-user | $\begin{aligned} & 13.10 \\ & 37.95 \end{aligned}$ | 0.0025 |
| Commercial fishing - trolling or drfting mid or top wate | User <br> Non-user | $\begin{aligned} & 13.69 \\ & 36.88 \end{aligned}$ | 0.0267 |
| Commercial spear fishing with power heads | User <br> Non-user | $\begin{aligned} & 12.38 \\ & 38.87 \end{aligned}$ | 0.0021 |
| Commercial spear fishing without power heads | User <br> Non-user | $\begin{aligned} & 12.38 \\ & 40.24 \end{aligned}$ | 0.0007 |
| SCUBA diving (taking things) | User <br> Non-user | $\begin{aligned} & 13.81 \\ & 38.50 \end{aligned}$ | 0.0004 |

1. A value less than $(<) 0.05$ is statistically significant with 95 percent confidence or higher.

Table 4.12. Maximum Acceptable Percent Impact on Various Activities from Research Only Areas in GRNMS: Users versus Non-users Version 2 Surveys

| Activity | User <br> Group | Mean | T-test <br> Significance ${ }^{1}$ |
| :---: | :---: | :---: | :---: |
| Recreational bottom fishing | User <br> Non-user | $\begin{aligned} & 23.90 \\ & 34.14 \end{aligned}$ | 0.2574 |
| Recreational fishing - trolling or drfting in mid or top r | User <br> Non-user | $\begin{aligned} & 22.62 \\ & 32.92 \end{aligned}$ | 0.2448 |
| Recreational spear fishing without power heads | User <br> Non-user | $\begin{aligned} & 16.31 \\ & 30.79 \end{aligned}$ | 0.1084 |
| Recreational spear fishing with power heads | User <br> Non-user | $\begin{aligned} & 18.81 \\ & 28.92 \end{aligned}$ | 0.2473 |
| Commercial bottom fishing | User <br> Non-user | $\begin{aligned} & 16.79 \\ & 28.02 \end{aligned}$ | 0.2016 |
| Commercial fishing - trolling or drfting mid or top wat | User <br> Non-user | $\begin{aligned} & 16.79 \\ & 26.78 \end{aligned}$ | 0.2426 |
| Commercial spear fishing with power heads | User <br> Non-user | $\begin{aligned} & 16.07 \\ & 24.14 \end{aligned}$ | 0.3548 |
| Commercial spear fishing without power heads | User <br> Non-user | $\begin{aligned} & 16.07 \\ & 20.86 \end{aligned}$ | 0.5630 |
| SCUBA diving (taking things) | User <br> Non-user | $\begin{aligned} & 16.07 \\ & 32.44 \end{aligned}$ | 0.0556 |

1. A value less than (<) 0.05 is statistically significant with 95 percent confidence or higher.

## References

Aukerman, Robert. 1987. User Pays for Recreation Resources. Fort Collins, Colorado: Colorado State University, Research Services.

Bishop, Richard C., David J. Chapman, Barbara J. Kanninen, Jon A. Krosnick, Bob Leeworthy, and Norman F. Meade. 2001. Total Economic Value for Protecting and Restoring Hawaiian Coral Reef Ecosystems: Final Report. Silver Spring, MD: NOAA Office of National Marine Sanctuaries, Office of Response and Restoration, and Coral Reef Conservation Program. NOAA Technical Memorandum CRCP 16.406 pp. Available at http://coralreef.noaa.gov/aboutcrcp/news/featuredstories/oct11/hi_value/resources/protecting_res toring_hawaiian_cre.pdf

Brown, LaTonya L. 1992. A Legislative History of Outdoor Recreation User Fees. Congressional Research Service, Library of Congress, Washington, D.C. August 14, 1992, 23pp.

Dillman, D. A.. 1978. Mail and Telephone Surveys: The Total Design Method. Wiley-Interscience, New York, NY.

Fedler, A. J. \& Miles, A. F. (1989). Paying for backcountry recreation: Understanding the acceptability of use fees. Journal of Park and Recreation Administration, 7 (2), 35-46.

INFO USA. Mail Survey Database for Georgia Households. 5711 S. Circle, Omaha, NE 68127.
Kyle, G., Graefe, A. \& Absher, J. (2002). Determining appropriate prices for recreation on public lands. Journal of Park and Recreation Administration, 20(2), 69-89.

LaFranchi, Chris and Linwood Pendleton. 2008. Private Boating and Boater Activities in the Channel Islands: A spatial analysis and assessment. Final Report prepared for the Resources Legacy Fund Foundation (RLFF) and the National Marine Sanctuary Program (NMSP), March 2008, 79pp. Available at http://sanctuaries.noaa.gov/science/socioeconomic/channelislands/pdfs/privboat1.pdf

Leeworthy Vernon R. 1993. The Feasibility of User Fees in National Marine Sanctuaries: A Preliminary Characterization. Silver Spring, MD: National Oceanic and Atmospheric Administration, National Ocean Service, Strategic Environmental Assessments Division, December 1993, 24pp.

Leeworthy, Vernon R. 2012a. Knowledge, Attitudes and Perceptions of Management Strategies and Regulations of the Gray's Reef National Marine Sanctuary by Users and Non-users of the Sanctuary. Silver Spring, MD: National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, March 2012.

Leeworthy, Vernon R. 2012b. Technical Appendix: Knowledge, Attitudes and Perceptions of Management Strategies and Regulations of the Gray’s Reef National Marine Sanctuary by Users and Non-users of the Sanctuary. Silver Spring, MD: National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, February 2012.

Leeworthy, Vernon R. 2013. Knowledge, Attitudes and Perceptions of Management Strategies and Regulations of the Gray's Reef National Marine Sanctuary by Users and Non-users of the Sanctuary, Version 2. Silver Spring, MD: National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, March 2013.

Loper, Christy. 2008. Valuing Networks of Marine Reserves: An Assessment of Recreational Users’ Preferences for Marine Conservation in California’s Channel Islands. PhD dissertation, Newark, DE: University of Delaware, College of Marine Studies, June 24, 2008. Milon, J. W., D. O. Suman, M. Shivlani, and K. A. Cochran. 1997. Commercial fishers' perceptions of marine reserves for the Florida Keys National Marine Sanctuary. Florida Sea Grant Technical Paper-89.

Statistical Analysis System (SAS) Version 9.1. The SAS Institute, Inc. Cary, North Carolina.
Shivlani, M., Leeworthy V.R., Murray, T.J., Suman, D.O., and F. Tonioli. 2008. Knowledge, Attitudes and Perceptions of Management Strategies and Regulations of the Florida Keys National Marine Sanctuary by Commercial Fishers, Dive Operators, and Environmental Group Members: A Baseline Characterization and 10-year Comparison. Marine Sanctuaries Conservation Series ONMS-08-06. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD. 170 pp. Available at http://sanctuaries.noaa.gov/science/socioeconomic/floridakeys/pdfs/kap2.pdf

Suman, D. O., M. P. Shivlani, and J. W. Milon. 1999. Perceptions and Attitudes Regarding Marine Reserves: A Comparison of Stakeholder Groups in the Florida Keys National Marine Sanctuary. Ocean and Coastal Management 42: 1019-1040.

Thomas J. Murray \& Associates. 2005. Tortugas 2000-A post mortem: Evaluation of actual versus projected socioeconomic impacts of the Dry Tortugas Ecological Reserve. MARFIN final report in completion of MARFIN project NA04NMF4330079. Available at http://sanctuaries.noaa.gov/science/socioeconomic/floridakeys/pdfs/tortugasmarfin.pdf

Winter, P., Palucki, L., \& Burkhardt. R. (1999). Anticipated responses to a fee program: The key is trust. Journal of Leisure Research, 31(3), 207-226.

## APPENDIX A: USER AND NON-USER VERSION 2 QUESTIONNAIRES

# Survey for Coastal \& Ocean Georgia AND <br> <br> Gray's Reef National Marine Sanctuary 

 <br> <br> Gray's Reef National Marine Sanctuary}

Managers of Gray's Reef National Marine Sanctuary (GRNMS) would like to know how you feel about ocean and coastal resources management off the Georgia coast and in GRNMS. More specifically, GRNMS managers would like to know about your uses of these ocean and coastal resources and your opinions about different management strategies and regulations. This survey is intended for those who visit or use Gray's Reef National Marine Sanctuary (GRNMS).

For statistical sampling purposes, we need a person in the household who is 18 years of age or older to fill out the questionnaire.

Your participation is voluntary. Any information that identifies you (name, address and telephone number) will be destroyed at the end of the information collection. Only statistical summaries of information across all survey respondents will be released publicly or made available to GRNMS managers. Results of this survey will be posted on the Office of National Marine Sanctuaries web site.

Should you have any questions, please feel free to contact me.
Lindsay Williamson
GRNMS Survey Technician
912-598-2382
Lindsay.Williamson@NOAA.gov

Public reporting burden for this collection of information is estimated to average about one half hour per response, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing burden, to Dr. Vernon R. (Bob) Leeworthy, Chief Economist, National Ocean Service, Office of National Marine Sanctuaries, 1305 East West Highway, SSMC 4, 11th floor, Silver Spring, MD 20910. (Reference OMB Control Number 0648-0625, Expiration Date: 02/28/2014.)

Notwithstanding any other provision of the law, no person is required to respond to, nor shall any person be subject to a penalty for failure to comply with, a collection of information subject to the requirements of the Paperwork Reduction Act, unless the collection of information displays a currently valid OMB Control Number.



National Marine Sanctuaries ma

GRay's Reef

Definition. Ocean areas include the Atlantic Ocean and coastal areas include inland bays, estuaries and tidally influenced portions of rivers where fresh and saltwater mix.

Map of Coastal \& Ocean Georgia and GRNMS


- Grays Reef National Marine Sanctuary (GRNMS) is located 16 miles offshore of Sapelo Island, Georgia.
- GRNMS is 22 -square miles and contains rocky ledges and sandy flats.
- GRNMS is a popalar recreational fishing site with some diving.
- No commercial fishing currently takes place in GRNMS, but it is not prohibited.


## SECTION 1

## Opinions About Ocean \& Coastal Resources Protection and Management

1. On a scale of 1 to 5 , where 1 means No Concern at All and 5 means Extremely Concerned, to what extent are you concerned about the health of ocean \& coastal areas around Georgia outside the Grays Reef National Marine Sanctuary (GRNMS)?

## Please circle the number for each item.

a. Ocean acidification
b. Climate change
c. Sea level rise
. Over fishing (catching more than can be replaced)
e. Coral reef health or other live bottom habitat
. Marine animal's health
g. Shipping (marine transportation)
h. Dredging/Offshore dredge disposal
i. Beach renourishment
j. Energy production (oil \& gas)
k. Alternative Energy production (wind, tidal, wave)
I. Mining of minerals (including sand)
m. Habitat loss from coastal development
n. Pollution (contaminants such as mercury, PCBs, sewage, pesticides)

## em.

Please circle the number for each item.

| h. | Dredging/Offshore dredge disposal | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i. | Beach renourishment | 1 | 2 | 3 | 4 | 5 |
| j. | Energy production (oil \& gas) | 1 | 2 | 3 | 4 | 5 |
| k. | Alternative Energy production (wind, tidal, wave) <br> I. | 1 | 2 | 3 | 4 | 5 |
| Mining of minerals (including sand) | 1 | 2 | 3 | 4 | 5 |  |
| m.Habitat loss from coastal development <br> n.Pollution (contaminants such as mercury, PCBs, <br> sewage, pesticides) | 1 | 2 | 3 | 4 | 5 |  |

3. On a scale from 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support the protection of ocean \& coastal resources in and around Georgia outside GRNMS?

Please circle the number for your answer.

Protection in Georgia outside GRNMS

4. On a scale from 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support the protection of ocean resources inside GRNMS?

Please circle the number for your answer.

Protection inside GRNMS


- Sometimes an area's use grows to the extent that it cannot accommodate all uses without conflict among users.
- Marine zoning is often used to resolve conflicts by separating uses in different zones, very similar to what is done on land.

5. Do you support the use of marine zoning in ocean \& coastal areas off the coast of Georgia? (Check one)
$\square$ No (skip to question 12 on page 5)

## Some Facts for Questions 6 through 8

- Marine reserves are a specific kind of marine zoning in which nothing is allowed to be taken (removed).
- All activities that take or remove natural resources are prohibited, so fishing would be prohibited inside these types of zones.
- All other activities that do not involve taking things are allowed.
- This management strategy is often used to resolve conflicts between those taking things and those who don't take things (fishing versus diving).
- Size of the areas is important since generally the larger the area the more users that will be affected.
- This prohibition on taking activities may lead to social and economic impacts.

6. On a scale from 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support protection of resources in ocean and coastal waters in and around Georgia outside GRNMS with the use of marine reserves?

Please circle the number for your answer.

Marine Reserves in Georgia outside GRNMS

7. On a scale from 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support protection of resources in ocean and coastal waters inside GRNMS with the use of marine reserves?

Please circle the number for your answer.

Marine Reserves inside GRNMS

8. What is the maximum amount of impact on the percent of each activity that you would find acceptable for each type of Activity, if marine reserves were used?

## ACTIVITY

Percent (0 to 100)
a. Recreational bottom fishing
b. Recreational fishing - trolling or drifting in mid or top water
$\qquad$
c. Recreational spear fishing with power heads
$\qquad$
d. Recreational spear fishing without power heads
$\qquad$
e. Commercial bottom fishing
$\qquad$
f. Commercial fishing - trolling or drifting in mid or top water
g. Commercial spear fishing with power heads
h. Commercial spear fishing without power heads
i. SCUBA diving (taking things) $\qquad$

## Some Facts for Questions 9 through 11

- Research Only Areas are a specific type of marine zoning where the only activity allowed is scientific research or education.
- The scientific research is used to test the impacts of various uses on natural and cultural resources.
- Size of the areas is important since generally the larger the area the more users that will be impacted.
- This may lead to social and economic impacts

9. On a scale of 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support protection of ocean \& coastal resources in and around Georgia outside GRNMS with the use of "Research Only Areas"?

Please circle your answer.

Research Only Areas in Georgia outside GRNMS

10. On a scale of 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support protection of ocean \& coastal resources inside GRNMS with the use of "Research Only Areas"?

Please circle your answer.

Research Only Areas inside GRNMS

11. What is the maximum amount of impact you would find acceptable for each type of Activity, if Research Only Areas were used? Please provide the maximum percent of impact on each activity.

## ACTIVITY

a. Recreational bottom fishing
b. Recreational fishing - trolling or drifting in mid or top water
c. Recreational spear fishing with power heads
d. Recreational spear fishing without power heads
e. Commercial bottom fishing
f. Commercial fishing - trolling or drifting in mid or top water
g. Commercial spear fishing with power heads
h. Commercial spear fishing without power heads
i. SCUBA diving (taking things)
j. SCUBA diving (don't take anything)
k. Whale watching of other wildlife viewing activities

## Some Facts for Question 12

- Historically fishery managers or managers of marine mammals have managed on a species by species basis.
- Recent trends are to expand this species specific approach to what is being called multiple species management.
- In fisheries management, the approach involves looking at the various inter-relationships between species such as predator-prey relationship (big fish eat little fish).

12. On a scale from 1 to 5, where 1 means No Support at All and 5 means Strongly Support, to what extent do you support moving from species specific fishery management to an multiple species approach that looks at all species and their inter-relationships?

Please circle your answer.

Change to multiple species management


## Some Facts for Question 13

- Another more comprehensive approach goes beyond fishery management.
- In a full ecosystem-based approach, all human uses and values are recognized.
- Management attempts to achieve a balance across many different uses and values.

13. On a scale from 1 to 5, where 1 means No Support at All and 5 means Strongly Support, to what extent do you support moving from species specific or multiple species management to full ecosystem-based management?

Please circle your answer.

Change to full ecosystem-based management


## SECTION 2

## Sources of Information on Ocean \& Coastal Resources and GRNMS

In this section, we want to learn what are the best ways GRNMS can communicate with you by understanding the sources of information which you use, and which sources of information you trust.
14. Sources of Information Used (Please check all sources you use).
a. $\square$ Grays Reef National Marine Sanctuary Advisory Council
b. $\square$ Grays Reef National Marine Sanctuary Staff
c. $\square$ Grays Reef National Marine Sanctuary Web site
d. $\square$ NOAA's National Marine Fisheries Service
e. $\square$ Atlantic States Marine Fisheries Commission
f. $\quad$ Atlantic Fishery Management Council
g. $\square$ Georgia Department of Natural Resources
h. $\square$ Georgia Sea Grant
i. $\quad$ Georgia's Coastal Conservation Association (CCA)
j. $\quad$ Recreational Fishing Alliance (RFA)
k. $\square$ American Sportfishing Association (ASA)
I. $\square$ National Coalition for Marine Conservation
m.International Game and Fish Association (IGFA)
n.Southern Kingfish Association (SKA)
o.Fishing Magazines/Newsletters
p.SCUBA diving magazines/Newsletters
q.Newspapers
r.Radio
s.Television
t.Internet
u.Social Media (Twitter, You Tube, Facebook, etc.)
v. Word of Mouth
x. $\square$ Others (please specify, include people like a marina manager, other anglers or divers, local community leader, family member, friend, etc.)
15. For the sources of information you said you used in question 14 , on a scale of 1 to 5 , where 1 means No Trust at All and 5 means Completely Trust, to what extent do you trust each source of information?

Please circle your answer.
If the source was not used, circle NA (Not Applicable).
SOURCES
a. Grays Reef National Marine Sanctuary Advisory Council
b. Grays Reef National Marine Sanctuary Staff
c. Grays Reef National Marine Sanctuary Web site
d. NOAA's National Marine Fisheries Service
e. Atlantic States Marine Fisheries Commission
f. Atlantic Fishery Management Council
g. Georgia Department of Natural Resources
h. Georgia Sea Grant
i. Georgia's Coastal Conservation Association (CCA)
j. Recreational Fishing Alliance (RFA)
k. American Sportfishing Association (ASA)
I. National Coalition for Marine Conservation
m. International Game and Fish Association (IGFA)
n. Southern Kingfish Association (SKA)
o. Fishing Magazines/Newsletters
p. SCUBA diving magazines/Newsletters
q. Newspapers

Radio
s.

| Television | 1 |
| :--- | :--- |

t. Internet
u. Social Media (Twitter, You Tube, Facebook, etc)
v. Word of Mouth
x. Others (please specify, include people like a marina manager, other anglers or divers, local community leader, family member, friend, etc.)

## Information From GRNMS

16. How do you like to receive information? (Please check all that apply).
a. $\square$ Web site
b. $\square$ E-mail list serve
c.Newsletter by delivered by U.S. Post Office
d.Telephone call from Staff
e. $\square$ E-mail from staff
17. Do you know who sets policy/management for National Marine Sanctuaries and for fisheries in ocean and coastal areas?
a. For National Marine Sanctuaries

> Name of Agency
b. For Ocean areas of Georgia
c. For Coastal areas in and around Georgia
18. How would you rank your familiarity with the rules and regulations in place at GRNMS?
(Please check one)
$\square$ Very familiar
$\square$ Somewhat Familiar
$\square$ I am not familiar with any of the rules or regulations

## SECTION 3

## Status and Conditions of the Resources in GRNMS

In this section, we would like your opinion on the status of the condition of the resources in GRNMS.
19. On a scale of 1 to 5 , where 1 means Getting a lot Better and 5 means Getting a lot Worse, please rate how you think the status/condition of each of the following resources has been changing since implementation of the GRNMS (1981).

Please circle the number corresponding to the status of the condition. If you don't know the status or don't have an opinion, circle DK.

RESOURCE
a. Live bottom habitat
b. Other bottom habitat
c. Fish populations (bottom fish)
d. Fish populations (pelagic)
e. Fish populations (diversity or number of species)
f. Other Sea life (abundance)
g. Other Sea life (diversity or number of species)
h. Water quality
i. Invasive species (such as lionfish)
j. Marine debris (plastics, other trash)
k. Sea based pollution (discharges from boats)

## SECTION 4

## Activities in Ocean \& Coastal Areas in and Around Georgia and in the GRNMS

In this section, we want to learn about your recreation activities in the ocean \& coastal areas both in the areas in and around Georgia and the portion of those activities in GRNMS.
20. Which activities do you do in ocean \& coastal areas both in and around Georgia and inside GRNMS? Please check all that apply.

## ACTIVITY

Recreational bottom fishing
Recreational fishing - trolling or drifting in mid or top water
Recreational spear fishing with power heads
Recreational spear fishing without power heads
SCUBA diving (taking things)
SCUBA diving (don't take anything)
Whale watching of other wildlife viewing activities
Sailing

## Some Activities that do not take place in GRNMS

Beach Activities
Surfing
Windsurfing or Kite boarding
Personal Watercraft Use (jet skis, wave runners, etc.)
Shorebird Watching


Georgia

21. For those activities you did in 2010, please provide how many days you did the activity in Georgia and how many of those days were in GRNMS. (If all your days were in GRNMS, then code all your days in Georgia and GRNMS). Count any part of a day as a whole day.

|  | Days <br> In <br> Georgia | Days <br> in <br> GRNMS |
| :--- | :--- | :--- |
| ACTIVITY | - | - |
| Recreational bottom fishing | - | - |
| Recreational fishing - trolling or drifting in mid or top water | - | - |
| Recreational spear fishing with power heads | - | - |
| Recreational spear fishing without power heads | - | - |
| SCUBA diving (taking things) | - | - |
| SCUBA diving (don't take anything) | - | - |

22. For the days you did activities in GRNMS in 2010, please provide the number of days by each type of boat access.

- Private boats would be your boat or a boat owned by family or friend but not for hire.
- Charter and party boats are boats that take people out for a fee.
- Charter boats usually limit their number of passengers, but charge for the boat for a day.
- Party boats usually carry large numbers of people and charge by the head or person and are some times called head-boats.

|  | Days <br> Private <br> Boat | Days <br> Charter <br> Boat | Days <br> Party <br> Boat |
| :--- | :--- | :--- | :--- |
| ACTIVITY | - | - | - |
| Recreational bottom fishing | - | - | - |
| Recreational fishing - trolling or drifting in mid or top water | - | - | - |
| Recreational spear fishing with power heads | - | - | - |
| Recreational spear fishing without power heads | - | - | - |
| SCUBA diving (taking things) | - | - | - |
| SCUBA diving (don't take anything) | - | - | - |
| Whale watching of other wildlife viewing activities |  |  | - |

23. When doing your activities from a private boat, how many other people are usually with you on the boat? $\qquad$ (number of other people)
24. Do you participate in fishing tournaments in GRNMS?YesNoDon't fish
25. What factors influenced your choice of going to GRNMS to do your activities? For each factor circle the appropriate answer.
a. Weather
b. Fish species preference
c. Time of Day
d. Seasonal patterns
e. Word of mouth/radio talk
f. Boat Captain's choice
g. Sea conditions
h. Distance to GRNMS
i. Better fishing
j. Better diving for things to see

YES

SOMEWHAT
NOT AT ALL
SOMEWHAT
NOT AT ALL
SOMEWHAT
NOT AT ALL
SOMEWHAT
NOT AT ALL
SOMEWHAT NOT AT ALL
SOMEWHAT NOT AT ALL
SOMEWHAT NOTAT ALL
SOMEWHAT NOTAT ALL
SOMEWHAT NOTATALL
SOMEWHAT NOTAT ALL

## SECTION 5

## Activity Specialization

In this section, we are interested in learning about your main or primary recreation activity that you participate in ocean \& coastal areas off the Georgia coast including activities in GRNMS.
26. Of the list of activities in questions 20 and 21 , which one of these is your main or primary activity in the ocean \& coastal areas of Georgia, including GRNMS?

For the next four questions, please place a check mark next to the answer that best fits you for each question.
27. When I participate in my main or primary activity, I feel like: (Check one)
a beginner. I don't really feel like I am part of the activity scene.
an occasional or irregular participant. Sometimes it is fun, entertaining or rewarding to do my activity. a habitual and regular participant in the activity an insider to the sport. The activity is an important part of who I am.
28. During my activity, I can be best described as: (Check one)
$\square$ having very little understanding of the activity. I am often unsure about how to do certain things when I go.
having some understanding of the activity, but still in the process of learning more about the sport.
I am becoming more familiar and comfortable with the activity.
$\square$ being comfortable with the sport. I have a good understanding of what I can do, and how to do it. a knowledgeable expert in the sport. I encourage, teach and enhance opportunities for others who are interested in the activity.
29. My relationships with others who do the activity are: (Check one) not established. I really don't know any other people who do the activity. very limited. I know some others in the activity by sight and sometimes talk with them, but I don't know their names.
$\square$ one of familiarity. I know the names of others who do the activity, and often speak with them. close. I have personal and close relationships with others in the activity. These friendships often revolve around the activity.
30. My commitment to the activity is: (Check one)
very slight. I have very little connection to the activity. I may or may not continue to participate in the sport in the future.
$\square$ moderate. I will continue to do it as it is entertaining and provides the benefits I want. fairly strong. I have a sense of being a member of the activity, and it is likely that I will continue to do it for a long time.
very strong. I am totally committed to the activity. I encourage other to participate in the sport and seek to ensure the activity continues in the future.
31. If you had to replace all of the equipment that you currently own for your primary activity with similar equipment, how much would it cost to replace?
\$ $\qquad$ AMOUNT TO REPLACE PRIMARY ACTIVITY EQUIPMENT
32. On a scale of 1 to 5 , where 1 means No Use and 5 means A Lot of Use, to what extent do you make use of the following for current information about your primary activity?

Please circle the number for your answer.
a. Information Source Used
b. Talking with others who participate in the activity
c. Magazines
d. Government agency publications
e. Conservation organization publications
f. Newspapers
g. Diving shops/companies
h. Club meetings/newsletters
i. Television
j. Radio
k. Internet

33. Below is a list of reasons why people engage in recreation activities. On a scale of 1 to 5 , where 1 means Not at All Important and 5 means Extremely Important, how important is each of the reasons for your primary activity?

Please circle the number for your answer.
a. Reason for engaging in primary activity
b. To be outdoors
c. For family recreation
d. To experience new and different things
e. For relaxation
f. To be close to the water
g. To get away from the demands of other people
h. To be with friends

|  | i. | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | To develop my skills | 1 | 2 | 3 | 4 | 5 |
| j. | To get away from the regular routine | 1 | 2 | 3 | 4 | 5 |
|  | To experience adventure and excitement | 1 | 2 | 3 | 4 | 5 |
|  | I. | 1 | 2 | 3 | 4 | 5 |

## SECTION 6

Ways You Value Ocean \& Coastal Resources/Marine Environment
In this section, we want to learn about the ways you value the many products and services that are derived from ocean \& coastal resources and the things you would do to help ensure their sustainability for the future.
34. Below is a list of goods or services that people get from ocean \& coastal resources. On a scale of 1 to 5 , where 1 means No Value and 5 means Extremely High Value, to what extent do you value each good or service?

Please circle the number for your answer.
GOOD OR SERVICE
a. Support for recreation activities
b. Seafood purchased at local stores and restaurants
c. Seafood purchased at non local stores and restaurants
d. Support for Scientific Research
e. Support for education
f. Supply of mineral resources through mining
g. Supply of oil \& gas
h. Supply of alternative energy (wind, wave, tidal)
i. Supply of pharmaceutical products through mining or harvest of resources
j. Protection of resources even though I never intend to visit or directly use them

|  |  | 2 | 3 | 4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| estaurants | 1 | 2 | 3 | 4 | 5 |
| and restaurants | 1 | 2 | 3 | 4 | 5 |
|  | 1 | 2 | 3 | 4 | 5 |
|  | 1 | 2 | 3 | 4 | 5 |
| ing | 1 | 2 | 3 | 4 |  |
|  | 1 | 2 | 3 | 4 |  |
| , tidal) | 1 | 2 | 3 | 4 | 5 |
| gh mining | 1 | 2 | 3 | 4 | 5 |
| ver intend | 1 | 2 | 3 | 4 | 5 |

35. On a scale of 1 to 5 , where 1 means Would Not Do and 5 means Would Do the Maximum, to what extent would you undertake the activities or actions to ensure that ocean \& coastal resources are used sustainability an available for future generations to enjoy?

Please circle the number for your answer.
ACTIVITY OR ACTION
a. Volunteer time
b. Pay higher taxes for resource protection and restoration
c. Pay higher prices for goods and services due to costs to businesses in complying with regulations that protect ocean \& coastal resources or require restoration of areas damaged
d. Pay user fees like fishing licenses or diving access fees or additional boat registration fees
e. Donate to groups representing recreational fishing interests
f. Donate to groups representing diving interests
g. Recycle
h. Use less energy
i. Avoid/boycott certain seafood products
j. Other (please specify)
$\qquad$


## SECTION 7

## Information About Yourself

In this last section, we need information about you to help classify and analyze your responses to ensure the scientific validity of this information. Any information that can connect this information with you personally will be protected and not given out to anyone.
36. $\square$ Male $\square$ Female
37. Year born $\qquad$
38. Are you Hispanic or Latino? $\square$ Yes $\square$ No
39. What is your race? (Check one or more)WhiteBlack or African American
$\square$ American Indian or Alaskan NativeAsianNative Hawaiian or Other Pacific Islander
40. How many people age 18 or older live in your household? $\qquad$ (number of people)
41. How many people under age 18 live in your household? $\qquad$ (number in household)
42. What type below best describes your household? (Check one)Single adult with no children 18 or underSingle adult with children under 18
Two adults with no children 18 or underTwo adults with children under 18
More than two adults with no children under 18More than two adults with children 18 or under
43. What is the highest level of education completed? (Check one)$8^{\text {th }}$ grade or less$9^{\text {th }}-12^{\text {th }}$ grade, no diploma$12^{\text {th }}$ grade High School Grad or equivalent (GED or alternative credential)Some College, 1 or more years, no degree
Associate's degree (for example: AA, AS)
Bachelor's degree (for example: BA, BS)
Master's degree (for example: MA, MS, MEng, Med, MSW, MBA)
Professional School degree (for example: MD, DDS, DVM, LLB, JD)
Doctor's degree (for example: PhD, EdD)
44. What is your employment status? (Check all that apply)unemployed
employed full time
employed part time
retired
studenthomemakernone of the above
45. Which category below best describes you annual household income before taxes in 2010 ? (Check one)

Less than \$5,000\$40,000 to \$44,999
\$5,000 to \$9,999\$45,000 to \$49,999
\$10,000 to \$14,999 $\$ 50,000$ to $\$ 59,999$
\$15,000 to \$19,999
\$20,000 to \$24,999
\$60,000 to \$74,999
\$25,000 to \$29,999 \$75,000 to \$99,999
\$30,000 to \$34,999 \$100,000 to \$149,999\$35,000 to \$39,999
46. Do you own a boat?

$\square$Yes (Go to Question 47)No (Skip to Question 48)
47. What is the length of your boat $\qquad$ (feet)
48. Do you have memberships in any groups or clubs? (Check all that apply)Fishing groups, clubs or organizationsDiving groups, clubs or organizations
$\square$ Environmental groups, clubs or organizations
$\square$ Chambers of Commerce
$\square$ Other (specify type) $\qquad$

That completes the survey. THANK YOU. Please put in the return self-addressed envelope and return to us.

# Survey for Coastal \& Ocean Georgia AND Gray's Reef National Marine Sanctuary 

Managers of Gray's Reef National Marine Sanctuary (GRNMS) would like to know how you feel about ocean and coastal resources management off the Georgia coast and in GRNMS. More specifically, GRNMS managers would like to know about your uses of these ocean and coastal resources and your opinions about different management strategies and regulations. This survey is intended for those who do not use or visit GRNMS.

For statistical sampling purposes, we need a person in the household who is 18 years of age or older to fill out the questionnaire.

Your participation is voluntary. Any information that identifies you (name, address and telephone number) will be destroyed at the end of the information collection. Only statistical summaries of information across all survey respondents will be released publicly or made available to GRNMS managers. Results of this survey will be posted on the Office of National Marine Sanctuaries web site.

Should you have any questions, please feel free to contact me.
Lindsay Williamson
GRNMS Survey Technician
912-598-2382
Lindsay.Williamson@NOAA.gov

Public reporting burden for this collection of information is estimated to average about one half hour per response, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing burden, to Dr. Vernon R. (Bob) Leeworthy, Chief Economist, National Ocean Service, Office of National Marine Sanctuaries, 1305 East West Highway, SSMC 4, 11th floor, Silver Spring, MD 20910. (Reference OMB Control Number 0648-0625, Expiration Date: 02/28/2014.)

Notwithstanding any other provision of the law, no person is required to respond to, nor shall any person be subject to a penalty for failure to comply with, a collection of information subject to the requirements of the Paperwork Reduction Act, unless the collection of information displays a currently valid OMB Control Number.



National Marine SANCTUARIES

GRAY'S REEF

Definition. Ocean areas include the Atlantic Ocean and coastal areas include inland bays, estuaries and tidally influenced portions of rivers where fresh and saltwater mix.

Map of Coastal \& Ocean Georgia and GRNMS


- Grays Reef National Marine Sanctuary (GRNMS) is located 16 miles offshore of Sapelo Island, Georgia.
- GRNMS is 22 -square miles and contains rocky ledges and sandy flats.
- GRNMS is a popalar recreational fishing site with some diving.
- No commercial fishing currently takes place in GRNMS, but it is not prohibited.


## SECTION 1

## Opinions About Ocean \& Coastal Resources Protection and Management

1. On a scale of 1 to 5 , where 1 means No Concern at All and 5 means Extremely Concerned, to what extent are you concerned about the health of ocean \& coastal areas around Georgia outside the Grays Reef National Marine Sanctuary (GRNMS)?

Please circle the number for each item.
a. Ocean acidification
b. Climate change
c. Sea level rise
d. Over fishing (catching more than can be replaced)
e. Coral reef health or other live bottom habitat
. Marine animal's health
g. Shipping (marine transportation)
h. Dredging/Offshore dredge disposal
i. Beach renourishment
j. Energy production (oil \& gas)
k. Alternative Energy production (wind, tidal, wave)
I. Mining of minerals (including sand)
m. Habitat loss from coastal development
n. Pollution (contaminants such as mercury, PCBs, sewage, pesticides)
. On a scale of 1 to 5 , where 1 means No Concern at all and 5 means Extremely Concerned, to what extent are you concerned about the health of ocean areas in the Grays Reef National Marine Sanctuary (GRNMS)?

Please circle the number for each item.
a. Ocean acidification
b. Climate change
c. Sea level rise
d. Over fishing (catching more than can be replaced)
e. Coral reef health or other live bottom habitat
f. Marine animal's health
g. Shipping (marine transportation)


Please circle the number for each item.

|  | h. | Dredging/Offshore dredge disposal | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i. | Beach renourishment | 1 | 2 | 3 | 4 | 5 |
| j. | Energy production (oil \& gas) | 1 | 2 | 3 | 4 | 5 |
| k. | Alternative Energy production (wind, tidal, wave) | 1 | 2 | 3 | 4 | 5 |
| I. | Mining of minerals (including sand) | 1 | 2 | 3 | 4 | 5 |
| m. | Habitat loss from coastal development | 1 | 2 | 3 | 4 | 5 |
| n.Pollution (contaminants such as mercury, PCBs, <br> sewage, pesticides) | 1 | 2 | 3 | 4 | 5 |  |

3. On a scale from 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support the protection of ocean \& coastal resources in and around Georgia outside GRNMS?

Please circle the number for your answer.

Protection in Georgia outside GRNMS

4. On a scale from 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support the protection of ocean resources inside GRNMS?

Please circle the number for your answer.

Protection inside GRNMS


- Sometimes an area's use grows to the extent that it cannot accommodate all uses without conflict among users.
- Marine zoning is often used to resolve conflicts by separating uses in different zones, very similar to what is done on land.

5. Do you support the use of marine zoning in ocean \& coastal areas off the coast of Georgia? (Check one)No (skip to question 12 on page 5)

## Some Facts for Questions 6 through 8

- Marine reserves are a specific kind of marine zoning in which nothing is allowed to be taken (removed).
- All activities that take or remove natural resources are prohibited, so fishing would be prohibited inside these types of zones.
- All other activities that do not involve taking things are allowed.
- This management strategy is often used to resolve conflicts between those taking things and those who don't take things (fishing versus diving).
- Size of the areas is important since generally the larger the area the more users that will be affected.
- This prohibition on taking activities may lead to social and economic impacts.

6. On a scale from 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support protection of resources in ocean and coastal waters in and around Georgia outside GRNMS with the use of marine reserves?

Please circle the number for your answer.

Marine Reserves in Georgia outside GRNMS

7. On a scale from 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support protection of resources in ocean and coastal waters inside GRNMS with the use of marine reserves?

Please circle the number for your answer.

Marine Reserves inside GRNMS

8. What is the maximum amount of impact on the percent of each activity that you would find acceptable for each type of Activity, if marine reserves were used?

## ACTIVITY

Percent (0 to 100)
a. Recreational bottom fishing
b. Recreational fishing - trolling or drifting in mid or top water
c. Recreational spear fishing with power heads
$\qquad$
d. Recreational spear fishing without power heads
$\qquad$
e. Commercial bottom fishing
f. Commercial fishing - trolling or drifting in mid or top water
g. Commercial spear fishing with power heads
h. Commercial spear fishing without power heads
i. SCUBA diving (taking things)

## Some Facts for Questions 9 through 11

- Research Only Areas are a specific type of marine zoning where the only activity allowed is scientific research or education.
- The scientific research is used to test the impacts of various uses on natural and cultural resources.
- Size of the areas is important since generally the larger the area the more users that will be impacted.
- This may lead to social and economic impacts

9. On a scale of 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support protection of ocean \& coastal resources in and around Georgia outside GRNMS with the use of "Research Only Areas"?

Please circle your answer.

Research Only Areas in Georgia outside GRNMS

10. On a scale of 1 to 5 , where 1 means No Support at All and 5 means Strongly Support, to what extent do you support protection of ocean \& coastal resources inside GRNMS with the use of "Research Only Areas"?

Please circle your answer.

Research Only Areas inside GRNMS

11. What is the maximum amount of impact you would find acceptable for each type of Activity, if Research Only Areas were used? Please provide the maximum percent of impact on each activity.

ACTIVITY
a. Recreational bottom fishing
b. Recreational fishing - trolling or drifting in mid or top water
c. Recreational spear fishing with power heads
d. Recreational spear fishing without power heads
e. Commercial bottom fishing
f. Commercial fishing - trolling or drifting in mid or top water
g. Commercial spear fishing with power heads
h. Commercial spear fishing without power heads
i. SCUBA diving (taking things)
j. SCUBA diving (don't take anything)
k. Whale watching of other wildlife viewing activities

## Some Facts for Question 12

- Historically fishery managers or managers of marine mammals have managed on a species by species basis.
- Recent trends are to expand this species specific approach to what is being called multiple species management.
- In fisheries management, the approach involves looking at the various inter-relationships between species such as predator-prey relationship (big fish eat little fish).

12. On a scale from 1 to 5, where 1 means No Support at All and 5 means Strongly Support, to what extent do you support moving from species specific fishery management to an multiple species approach that looks at all species and their inter-relationships?

Please circle your answer.

Change to multiple species management


## Some Facts for Question 13

- Another more comprehensive approach goes beyond fishery management.
- In a full ecosystem-based approach, all human uses and values are recognized.
- Management attempts to achieve a balance across many different uses and values.

13. On a scale from 1 to 5, where 1 means No Support at All and 5 means Strongly Support, to what extent do you support moving from species specific or multiple species management to full ecosystem-based management?

Please circle your answer.

Change to full ecosystem-based management


## SECTION 2

## Sources of Information on Ocean \& Coastal Resources and GRNMS

In this section, we want to learn what are the best ways GRNMS can communicate with you by understanding the sources of information which you use, and which sources of information you trust.
14. Sources of Information Used (Please check all sources you use).
a. $\square$ Grays Reef National Marine Sanctuary Advisory Council
b. $\square$ Grays Reef National Marine Sanctuary Staff
c. $\square$ Grays Reef National Marine Sanctuary Web site
d. $\square$ NOAA's National Marine Fisheries Service
e. $\square$ Atlantic States Marine Fisheries Commission
f. $\quad$ Atlantic Fishery Management Council
g. $\square$ Georgia Department of Natural Resources
h. $\square$ Georgia Sea Grant
i. $\quad$ Georgia's Coastal Conservation Association (CCA)
j. $\square$ Recreational Fishing Alliance (RFA)
k. $\square$ American Sportfishing Association (ASA)
I. $\square$ National Coalition for Marine Conservation
m.International Game and Fish Association (IGFA)
n.Southern Kingfish Association (SKA)
o.Fishing Magazines/Newsletters
p.SCUBA diving magazines/Newsletters
q.Newspapers
r.Radio
s.Television
t.Internet
u.Social Media (Twitter, You Tube, Facebook, etc.)
v. Word of Mouth
x. $\square$ Others (please specify, include people like a marina manager, other anglers or divers, local community leader, family member, friend, etc.)
15. For the sources of information you said you used in question 14 , on a scale of 1 to 5 , where 1 means No Trust at All and 5 means Completely Trust, to what extent do you trust each source of information?

## Please circle your answer.

If the source was not used, circle NA (Not Applicable).

| SOURCES <br> a. Grays Reef National Marine Sanctuary Advisory Council | / |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1$ | 2 | 3 | 4 | 5 | NA |
| b. Grays Reef National Marine Sanctuary Staff | 1 | 2 | 3 | 4 | 5 | NA |
| c. Grays Reef National Marine Sanctuary Web site | 1 | 2 | 3 | 4 | 5 | NA |
| d. NOAA's National Marine Fisheries Service | 1 | 2 | 3 | 4 | 5 | NA |
| e. Atlantic States Marine Fisheries Commission | 1 | 2 | 3 | 4 | 5 | NA |
| f. Atlantic Fishery Management Council | 1 | 2 | 3 | 4 | 5 | NA |
| g. Georgia Department of Natural Resources | 1 | 2 | 3 | 4 | 5 | NA |
| h. Georgia Sea Grant | 1 | 2 | 3 | 4 | 5 | NA |
| i. Georgia's Coastal Conservation Association (CCA) | 1 | 2 | 3 | 4 | 5 | NA |
| j. Recreational Fishing Alliance (RFA) | 1 | 2 | 3 | 4 | 5 | NA |
| k. American Sportfishing Association (ASA) | 1 | 2 | 3 | 4 | 5 | NA |
| I. National Coalition for Marine Conservation | 1 | 2 | 3 | 4 | 5 | NA |
| m. International Game and Fish Association (IGFA) | 1 | 2 | 3 | 4 | 5 | NA |
| n. Southern Kingfish Association (SKA) | 1 | 2 | 3 | 4 | 5 | NA |
| o. Fishing Magazines/Newsletters | 1 | 2 | 3 | 4 | 5 | NA |
| p. SCUBA diving magazines/Newsletters | 1 | 2 | 3 | 4 | 5 | NA |
| q. Newspapers | 1 | 2 | 3 | 4 | 5 | NA |
| r. Radio | 1 | 2 | 3 | 4 | 5 | NA |
| s. Television | 1 | 2 | 3 | 4 | 5 | NA |
| t. Internet | 1 | 2 | 3 | 4 | 5 | NA |
| u. Social Media (Twitter, You Tube, Facebook, etc) | 1 | 2 | 3 | 4 | 5 | NA |
| v. Word of Mouth | 1 | 2 | 3 | 4 | 5 | NA |
| x. Others (please specify, include people like a marina manager, other anglers or divers, local community leader, family member, friend, etc.) | 1 | 2 | 3 | 4 | 5 | NA |
|  | 1 | 2 | 3 | 4 | 5 | NA |

## Information From GRNMS

16. How do you like to receive information? (Please check all that apply).
a. $\square$ Web site
b. $\square$ E-mail list serve
c.Newsletter by delivered by U.S. Post Office
d.Telephone call from Staff
e. $\square$ E-mail from staff
17. Do you know who sets policy/management for National Marine Sanctuaries and for fisheries in ocean and coastal areas?
a. For National Marine Sanctuaries

> Name of Agency
b. For Ocean areas of Georgia
c. For Coastal areas in and around Georgia
18. How would you rank your familiarity with the rules and regulations in place at GRNMS?
(Please check one)
$\square$ Very familiar
$\square$ Somewhat Familiar
$\square$ I am not familiar with any of the rules or regulations

## SECTION 3 <br> Activities in Ocean \& Coastal Areas in and Around Georgia

In this section, we want to learn about your recreation activities in the ocean \& coastal areas in and around Georgia.
19. Which activities do you do in ocean \& coastal areas both in and around Georgia?

Please check all that apply.

| ACTIVITY | Georgia |
| :--- | ---: |
| Recreational bottom fishing | $\square$ |
| Recreational fishing - trolling or drifting in mid or top water | $\square$ |
| Recreational spear fishing with power heads | $\square$ |
| Recreational spear fishing without power heads | $\square$ |
| SCUBA diving (taking things) | $\square$ |
| SCUBA diving (don't take anything) | $\square$ |
| Whale watching of other wildlife viewing activities | $\square$ |
| Sailing | $\square$ |
| Beach Activities | $\square$ |
| Surfing | $\square$ |
| Windsurfing or Kite boarding | $\square$ |
| Personal Watercraft Use (jet skis, wave runners, etc.) | $\square$ |
| Shorebird Watching | $\square$ |

20. For those activities you did in 2010, please provide how many days you did the activity in Georgia?

Count any part of a day as a whole day.

| ACTIVITY | Days <br> In <br> Georgia |
| :--- | :--- |
| Recreational bottom fishing | - |
| Recreational fishing - trolling or drifting in mid or top water | - |
| Recreational spear fishing with power heads | - |
| Recreational spear fishing without power heads | - |
| SCUBA diving (taking things) | - |
| SCUBA diving (don't take anything) |  |
| Whale watching of other wildlife viewing activities |  |

## SECTION 4

Ways You Value Ocean \& Coastal Resources/Marine Environment
In this section, we want to learn about the ways you value the many products and services that are derived from ocean \& coastal resources and the things you would do to help ensure their sustainability for the future.
21. Below is a list of goods or services that people get from ocean \& coastal resources. On a scale of 1 to 5 , where 1 means No Value and 5 means Extremely High Value, to what extent do you value each good or service?

## Please circle the number for your answer.

GOOD OR SERVICE
a. Support for recreation activities
b. Seafood purchased at local stores and restaurants
c.
d. Support for Scientific Research
e. Support for education
f. Supply of mineral resources through mining
g. Supply of oil \& gas
h. Supply of alternative energy (wind, wave, tidal)
i. Supply of pharmaceutical products through mining or harvest of resources
j. Protection of resources even though I never intend to visit or directly use them

22. On a scale of 1 to 5 , where 1 means Would Not Do and 5 means Would Do the Maximum, to what extent would you undertake the activities or actions to ensure that ocean \& coastal resources are used sustainability an available for future generations to enjoy?

Please circle the number for your answer.
ACTIVITY OR ACTION
a. Volunteer time
b. Pay higher taxes for resource protection and restoration
c. Pay higher prices for goods and services due to costs to businesses in complying with regulations that protect ocean \& coastal resources or require restoration of areas damaged
d. Pay user fees like fishing licenses or diving access fees or additional boat registration fees
e. Donate to groups representing recreational fishing interests
f. Donate to groups representing diving interests
g.
g. Recycle
h. Use less energy
i. Avoid/boycott certain seafood products
j. Other (please specify)
$\qquad$

| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 |
| 1 | 2 | 3 | 4 | 5 |
|  |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 |

## SECTION 5

## Information About Yourself

In this last section, we need information about you to help classify and analyze your responses to ensure the scientific validity of this information. Any information that can connect this information with you personally will be protected and not given out to anyone.
23. $\square$ Male $\square$ Female
24. Year born $\qquad$
25. Are you Hispanic or Latino? $\square$ Yes $\square$ No
26. What is your race? (Check one or more)White
$\square$ Black or African AmericanAmerican Indian or Alaskan NativeAsianNative Hawaiian or Other Pacific Islander
27. How many people age 18 or older live in your household? $\qquad$ (number of people)
28. How many people under age 18 live in your household? $\qquad$ (number in household)
29. What type below best describes your household? (Check one)Single adult with no children 18 or underSingle adult with children under 18
Two adults with no children 18 or underTwo adults with children under 18
More than two adults with no children under 18More than two adults with children 18 or under
30. What is the highest level of education completed? (Check one)$8^{\text {th }}$ grade or less

$9^{\text {th }}-12^{\text {th }}$ grade, no diploma
$\square 12^{\text {th }}$ grade High School Grad or equivalent (GED or alternative credential)Some College, 1 or more years, no degree
Associate's degree (for example: AA, AS)
Bachelor's degree (for example: BA, BS)
Master's degree (for example: MA, MS, MEng, Med, MSW, MBA)
Professional School degree (for example: MD, DDS, DVM, LLB, JD)Doctor's degree (for example: PhD, EdD)
31. What is your employment status? (Check all that apply)unemployed
employed full time
employed part time
retired
studenthomemakernone of the above
32. Which category below best describes you annual household income before taxes in 2010 ? (Check one)Less than \$5,000\$40,000 to \$44,999
$\square$ \$5,000 to \$9,999

\$10,000 to \$14,999
\$15,000 to \$19,999
\$20,000 to \$24,999
\$45,000 to \$49,999
\$25,000 to \$29,999
\$30,000 to \$34,999
\$35,000 to \$39,999

[^1]33. Do you own a boat?

$\square$Yes (Go to Question 34)No (Skip to Question 35)
34. What is the length of your boat $\qquad$ (feet)
35. Do you have memberships in any groups or clubs? (Check all that apply)Fishing groups, clubs or organizationsDiving groups, clubs or organizations
$\square$ Environmental groups, clubs or organizations
$\square$ Chambers of Commerce
$\square$ Other (specify type) $\qquad$

That completes the survey. THANK YOU. Please put in the return self-addressed envelope and return to us.


[^0]:    Socioeconomic monitoring, knowledge, attitudes, perceptions, management strategies, regulations, users, non-users, activity participation, resource conditions, socioeconomic/demographic profiles and statistical tests.

[^1]:    ,00 to \$39,000

